IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v154y2018icp308-318.html
   My bibliography  Save this article

The combustion performances and thermo-oxidative degradation kinetics of plane tree seeds (PTS) (Platanus orientalis L.)

Author

Listed:
  • Janković, Bojan
  • Dodevski, Vladimir

Abstract

Combustion characteristics (reactivity and reactivity evaluation, ignition index (Di), burn-out index (Df), combustion performance index (S) and combustion stability index (RW)) and thermo-oxidative degradation kinetics of plane tree seeds (PTS) were investigated. Oxidation analysis shows that PTS exhibits stable and high combustion activity, where comparison of ignition and burn-out index values showed that a more developed pore structures of PTS particles exist, and higher volatile matter content is present. Results are also confirmed through derived experience constant value (ζ) and which were compared with other energy sources. It was established that different maximal reaction rate values at various heating rates point out the PTS complex nature, which is stimulated with carbon oxidation reactions and volatile matter release. Kinetic analysis has shown that process can be divided into two stages: devolatilization stage (280–380 °C) and char combustion stage (380–600 °C). In order to obtain a stable solid product, rich in carbon, the PTS shows good performance but with application of high-temperature processing conditions.

Suggested Citation

  • Janković, Bojan & Dodevski, Vladimir, 2018. "The combustion performances and thermo-oxidative degradation kinetics of plane tree seeds (PTS) (Platanus orientalis L.)," Energy, Elsevier, vol. 154(C), pages 308-318.
  • Handle: RePEc:eee:energy:v:154:y:2018:i:c:p:308-318
    DOI: 10.1016/j.energy.2018.04.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218307655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao Rong & Teng Wang & Min Zhou & Hao Wang & Haobo Hou & Yongjie Xue, 2017. "Combustion Characteristics and Slagging during Co-Combustion of Rice Husk and Sewage Sludge Blends," Energies, MDPI, vol. 10(4), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Deli & Wang, Fang & Shen, Xiuli & Yi, Weiming & Li, Zhihe & Li, Yongjun & Tian, Chunyan, 2018. "Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate," Energy, Elsevier, vol. 165(PB), pages 527-536.
    2. Zhai, Xiaowei & Ge, Hui & Wang, Tingyan & Shu, Chi-Min & Li, Jun, 2020. "Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal," Energy, Elsevier, vol. 205(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae-Yong Jeong & Lkhagvadorj Sh & Jong-Ho Kim & Byoung-Hwa Lee & Chung-Hwan Jeon, 2019. "Experimental Investigation of Ash Deposit Behavior during Co-Combustion of Bituminous Coal with Wood Pellets and Empty Fruit Bunches," Energies, MDPI, vol. 12(11), pages 1-17, May.
    2. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    3. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    4. Wendi Chen & Fei Wang & Altaf Hussain Kanhar, 2017. "Sludge Acts as a Catalyst for Coal during the Co-Combustion Process Investigated by Thermogravimetric Analysis," Energies, MDPI, vol. 10(12), pages 1-11, December.
    5. Nepu Saha & Akbar Saba & Pretom Saha & Kyle McGaughy & Diana Franqui-Villanueva & William J. Orts & William M. Hart-Cooper & M. Toufiq Reza, 2019. "Hydrothermal Carbonization of Various Paper Mill Sludges: An Observation of Solid Fuel Properties," Energies, MDPI, vol. 12(5), pages 1-18, March.
    6. Wei, Daining & Zhang, Zhichao & Wu, Lining & Wang, Tao & Sun, Baomin, 2023. "Ammonia blend ratio impact on combustion characteristics and NOx emissions during co-firing with sludge and coal in a utility boiler," Energy, Elsevier, vol. 283(C).
    7. Jumoke Oladejo & Kaiqi Shi & Xiang Luo & Gang Yang & Tao Wu, 2018. "A Review of Sludge-to-Energy Recovery Methods," Energies, MDPI, vol. 12(1), pages 1-38, December.
    8. Małgorzata Wzorek, 2020. "Evaluating the Potential for Combustion of Biofuels in Grate Furnaces," Energies, MDPI, vol. 13(8), pages 1-15, April.
    9. Irina Glushankova & Aleksandr Ketov & Marina Krasnovskikh & Larisa Rudakova & Iakov Vaisman, 2018. "Rice Hulls as a Renewable Complex Material Resource," Resources, MDPI, vol. 7(2), pages 1-11, May.
    10. Longwei Pan & Yong Jiang & Lei Wang & Wu Xu, 2018. "Kinetic Study on the Pyrolysis of Medium Density Fiberboard: Effects of Secondary Charring Reactions," Energies, MDPI, vol. 11(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:154:y:2018:i:c:p:308-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.