IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v150y2018icp122-133.html
   My bibliography  Save this article

Flow-based nodal cost allocation in a heterogeneous highly renewable European electricity network

Author

Listed:
  • Tranberg, Bo
  • Schwenk-Nebbe, Leon J.
  • Schäfer, Mirko
  • Hörsch, Jonas
  • Greiner, Martin

Abstract

For a cost efficient design of a future renewable European electricity system, the placement of renewable generation capacity will seek to exploit locations with good resource quality, that is for instance onshore wind in countries bordering the North Sea and solar PV in South European countries. Regions with less favorable renewable generation conditions benefit from this remote capacity by importing the respective electricity as power flows through the transmission grid. The resulting intricate pattern of imports and exports represents a challenge for the analysis of system costs on the level of individual countries. Using a tracing technique, we introduce flow-based nodal levelized costs of electricity (LCOE) which allow to incorporate capital and operational costs associated with the usage of generation capacity located outside the respective country under consideration. This concept and a complementary allocation of transmission infrastructure costs is applied to a simplified model of an interconnected highly renewable European electricity system. We observe that cooperation between the European countries in a heterogeneous system layout does not only reduce the system-wide LCOE, but also the flow-based nodal LCOEs for every country individually.

Suggested Citation

  • Tranberg, Bo & Schwenk-Nebbe, Leon J. & Schäfer, Mirko & Hörsch, Jonas & Greiner, Martin, 2018. "Flow-based nodal cost allocation in a heterogeneous highly renewable European electricity network," Energy, Elsevier, vol. 150(C), pages 122-133.
  • Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:122-133
    DOI: 10.1016/j.energy.2018.02.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirko Schäfer & Bo Tranberg & Sabrina Hempel & Stefan Schramm & Martin Greiner, 2017. "Decompositions of injection patterns for nodal flow allocation in renewable electricity networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(8), pages 1-11, August.
    2. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    3. Eriksen, Emil H. & Schwenk-Nebbe, Leon J. & Tranberg, Bo & Brown, Tom & Greiner, Martin, 2017. "Optimal heterogeneity in a simplified highly renewable European electricity system," Energy, Elsevier, vol. 133(C), pages 913-928.
    4. Rodríguez, Rolando A. & Becker, Sarah & Andresen, Gorm B. & Heide, Dominik & Greiner, Martin, 2014. "Transmission needs across a fully renewable European power system," Renewable Energy, Elsevier, vol. 63(C), pages 467-476.
    5. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2016. "Agent-based modelling and simulation of smart electricity grids and markets – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 205-215.
    6. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    7. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    8. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aghahosseini, Arman & Bogdanov, Dmitrii & Barbosa, Larissa S.N.S. & Breyer, Christian, 2019. "Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 187-205.
    2. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    3. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    4. Lin, Wei & Jiang, Hua & Jian, Haojun & Xue, Jingwei & Wu, Jianghua & Wang, Chongyu & Lin, Zhenjia, 2023. "High-dimension tie-line security regions for renewable accommodations," Energy, Elsevier, vol. 270(C).
    5. Kan, Xiaoming & Hedenus, Fredrik & Reichenberg, Lina, 2020. "The cost of a future low-carbon electricity system without nuclear power – the case of Sweden," Energy, Elsevier, vol. 195(C).
    6. Chini, Christopher M. & Stillwell, Ashlynn S., 2020. "The changing virtual water trade network of the European electric grid," Applied Energy, Elsevier, vol. 260(C).
    7. Zhu, K. & Victoria, M. & Brown, T. & Andresen, G.B. & Greiner, M., 2019. "Impact of CO2 prices on the design of a highly decarbonised coupled electricity and heating system in Europe," Applied Energy, Elsevier, vol. 236(C), pages 622-634.
    8. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    9. Riepin, I. & Müsgens, F., 2019. "Seasonal Flexibility in the European Natural Gas Market," Cambridge Working Papers in Economics 1976, Faculty of Economics, University of Cambridge.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    2. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    3. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    4. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    5. Gawlick, Julia & Hamacher, Thomas, 2023. "Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050," Energy Policy, Elsevier, vol. 180(C).
    6. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    7. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "The Demand Side Management Potential to Balance a Highly Renewable European Power System," Energies, MDPI, vol. 9(11), pages 1-14, November.
    8. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    9. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
    10. Schyska, Bruno U. & Kies, Alexander, 2020. "How regional differences in cost of capital influence the optimal design of power systems," Applied Energy, Elsevier, vol. 262(C).
    11. Weiss, Olga & Bogdanov, Dmitry & Salovaara, Kaisa & Honkapuro, Samuli, 2017. "Market designs for a 100% renewable energy system: Case isolated power system of Israel," Energy, Elsevier, vol. 119(C), pages 266-277.
    12. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    13. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    14. Schlott, Markus & Kies, Alexander & Brown, Tom & Schramm, Stefan & Greiner, Martin, 2018. "The impact of climate change on a cost-optimal highly renewable European electricity network," Applied Energy, Elsevier, vol. 230(C), pages 1645-1659.
    15. Pleßmann, Guido & Blechinger, Philipp, 2017. "Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets," Energy, Elsevier, vol. 137(C), pages 1041-1053.
    16. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors," Energies, MDPI, vol. 9(7), pages 1-18, June.
    17. Ashfaq, Asad & Ianakiev, Anton, 2018. "Cost-minimised design of a highly renewable heating network for fossil-free future," Energy, Elsevier, vol. 152(C), pages 613-626.
    18. Ashfaq, Asad & Kamali, Zulqarnain Haider & Agha, Mujtaba Hassan & Arshid, Hirra, 2017. "Heat coupling of the pan-European vs. regional electrical grid with excess renewable energy," Energy, Elsevier, vol. 122(C), pages 363-377.
    19. Bianco, Vincenzo & Scarpa, Federico, 2018. "Impact of the phase out of French nuclear reactors on the Italian power sector," Energy, Elsevier, vol. 150(C), pages 722-734.
    20. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:150:y:2018:i:c:p:122-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.