IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v90y2017i8d10.1140_epjb_e2017-80200-y.html
   My bibliography  Save this article

Decompositions of injection patterns for nodal flow allocation in renewable electricity networks

Author

Listed:
  • Mirko Schäfer

    (Aarhus University)

  • Bo Tranberg

    (Aarhus University
    Danske Commodities A/S, Vaerkmestergade 3)

  • Sabrina Hempel

    (Frankfurt Institute for Advanced Studies)

  • Stefan Schramm

    (Frankfurt Institute for Advanced Studies)

  • Martin Greiner

    (Aarhus University)

Abstract

The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.

Suggested Citation

  • Mirko Schäfer & Bo Tranberg & Sabrina Hempel & Stefan Schramm & Martin Greiner, 2017. "Decompositions of injection patterns for nodal flow allocation in renewable electricity networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(8), pages 1-11, August.
  • Handle: RePEc:spr:eurphb:v:90:y:2017:i:8:d:10.1140_epjb_e2017-80200-y
    DOI: 10.1140/epjb/e2017-80200-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2017-80200-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2017-80200-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunz, Friedrich, 2018. "Quo Vadis? (Un)scheduled electricity flows under market splitting and network extension in central Europe," Energy Policy, Elsevier, vol. 116(C), pages 198-209.
    2. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    3. Tranberg, Bo & Schwenk-Nebbe, Leon J. & Schäfer, Mirko & Hörsch, Jonas & Greiner, Martin, 2018. "Flow-based nodal cost allocation in a heterogeneous highly renewable European electricity network," Energy, Elsevier, vol. 150(C), pages 122-133.
    4. Riepin, I. & Müsgens, F., 2019. "Seasonal Flexibility in the European Natural Gas Market," Cambridge Working Papers in Economics 1976, Faculty of Economics, University of Cambridge.
    5. Fabian Hofmann & Markus Schlott & Alexander Kies & Horst Stöcker, 2020. "Flow Allocation in Meshed AC-DC Electricity Grids," Energies, MDPI, vol. 13(5), pages 1-15, March.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:90:y:2017:i:8:d:10.1140_epjb_e2017-80200-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.