IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v125y2017icp337-344.html
   My bibliography  Save this article

Analysis of energy usage for RTG cranes

Author

Listed:
  • Papaioannou, Vicky
  • Pietrosanti, Stefano
  • Holderbaum, William
  • Becerra, Victor M.
  • Mayer, Rayner

Abstract

The purpose of this paper is to study and analyse the energy that is used by the various motors of a crane of the Rubber Tyred Gantry type. For this reason a single Rubber Tyred Gantry (RTG) crane has been instrumented at port of Felixstowe and data has been collected during normal operation for eight days. This data has been analysed in terms of active and idle modes and also in terms of energy usage by the various motors. From this analysis it is possible to determine that on average about half of the energy consumed is potentially recoverable. It is also estimated that the recovery of this proportion of energy could lead to savings of 32,600 L of fuel and 8100 tonnes of CO2 per year at Port of Felixstowe.

Suggested Citation

  • Papaioannou, Vicky & Pietrosanti, Stefano & Holderbaum, William & Becerra, Victor M. & Mayer, Rayner, 2017. "Analysis of energy usage for RTG cranes," Energy, Elsevier, vol. 125(C), pages 337-344.
  • Handle: RePEc:eee:energy:v:125:y:2017:i:c:p:337-344
    DOI: 10.1016/j.energy.2017.02.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Musolino, V. & Pievatolo, A. & Tironi, E., 2011. "A statistical approach to electrical storage sizing with application to the recovery of braking energy," Energy, Elsevier, vol. 36(11), pages 6697-6704.
    2. Stefano Pietrosanti & William Holderbaum & Victor M. Becerra, 2016. "Optimal Power Management Strategy for Energy Storage with Stochastic Loads," Energies, MDPI, vol. 9(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandra Prakash Garg & Vishal Kashav & Xuemuge Wang, 2023. "Evaluating sustainability factors of green ports in China under fuzzy environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7795-7821, August.
    2. Anthony Roy & François Auger & Jean-Christophe Olivier & Emmanuel Schaeffer & Bruno Auvity, 2020. "Design, Sizing, and Energy Management of Microgrids in Harbor Areas: A Review," Energies, MDPI, vol. 13(20), pages 1-24, October.
    3. Feras Alasali & Antonio Luque & Rayner Mayer & William Holderbaum, 2019. "A Comparative Study of Energy Storage Systems and Active Front Ends for Networks of Two Electrified RTG Cranes," Energies, MDPI, vol. 12(9), pages 1-14, May.
    4. Dawei Chen & Wangqiang Niu & Wei Gu & Nigel Schofield, 2019. "Game-Based Energy Management Method for Hybrid RTG Cranes," Energies, MDPI, vol. 12(18), pages 1-23, September.
    5. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    6. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    7. Feras Alasali & Stephen Haben & Victor Becerra & William Holderbaum, 2017. "Optimal Energy Management and MPC Strategies for Electrified RTG Cranes with Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murashko, Kirill & Nevstrueva, Daria & Pihlajamäki, Arto & Koiranen, Tuomas & Pyrhönen, Juha, 2017. "Cellulose and activated carbon based flexible electrical double-layer capacitor electrode: Preparation and characterization," Energy, Elsevier, vol. 119(C), pages 435-441.
    2. Abu Hanifah, Rabiatuladawiyah & Toha, Siti Fauziah & Hassan, Mohd Khair & Ahmad, Salmiah, 2016. "Power reduction optimization with swarm based technique in electric power assist steering system," Energy, Elsevier, vol. 102(C), pages 444-452.
    3. Hauge, H.H. & Presser, V. & Burheim, O., 2014. "In-situ and ex-situ measurements of thermal conductivity of supercapacitors," Energy, Elsevier, vol. 78(C), pages 373-383.
    4. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    5. Back, Jaime André & Tedesco, Leonel Pablo & Molz, Rolf Fredi & Nara, Elpidio Oscar Benitez, 2016. "An embedded system approach for energy monitoring and analysis in industrial processes," Energy, Elsevier, vol. 115(P1), pages 811-819.
    6. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.
    7. Zhang, Yuxin & Guo, Konghui & Wang, Dai & Chen, Chao & Li, Xuefei, 2017. "Energy conversion mechanism and regenerative potential of vehicle suspensions," Energy, Elsevier, vol. 119(C), pages 961-970.
    8. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    9. Dawei Chen & Wangqiang Niu & Wei Gu & Nigel Schofield, 2019. "Game-Based Energy Management Method for Hybrid RTG Cranes," Energies, MDPI, vol. 12(18), pages 1-23, September.
    10. Feras Alasali & Stephen Haben & Victor Becerra & William Holderbaum, 2017. "Optimal Energy Management and MPC Strategies for Electrified RTG Cranes with Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-18, October.
    11. Mirzaei, Amin & Jusoh, Awang & Salam, Zainal, 2012. "Design and implementation of high efficiency non-isolated bidirectional zero voltage transition pulse width modulated DC–DC converters," Energy, Elsevier, vol. 47(1), pages 358-369.
    12. Ademulegun, Oluwasola O. & Keatley, Patrick & Agbonaye, Osaru & Moreno Jaramillo, Andres F. & Hewitt, Neil J., 2020. "Towards a sustainable electricity grid: Market and policy for demand-side storage and wind resources," Utilities Policy, Elsevier, vol. 67(C).
    13. Feras Alasali & Stephen Haben & Husam Foudeh & William Holderbaum, 2020. "A Comparative Study of Optimal Energy Management Strategies for Energy Storage with Stochastic Loads," Energies, MDPI, vol. 13(10), pages 1-19, May.
    14. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Probabilistic modelling and analysis of stand-alone hybrid power systems," Energy, Elsevier, vol. 63(C), pages 19-27.
    15. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    16. Feras Alasali & Antonio Luque & Rayner Mayer & William Holderbaum, 2019. "A Comparative Study of Energy Storage Systems and Active Front Ends for Networks of Two Electrified RTG Cranes," Energies, MDPI, vol. 12(9), pages 1-14, May.
    17. Huang, Ton-Churo & Leu, Yih-Guang & Chang, Yuan-Chang & Hou, Sheng-Yun & Li, Cheng-Chou, 2013. "An energy harvester using self-powered feed forward converter charging approach," Energy, Elsevier, vol. 55(C), pages 769-777.
    18. Qi, Lingfei & Wu, Xiaoping & Zeng, Xiaohui & Feng, Yan & Pan, Hongye & Zhang, Zutao & Yuan, Yanping, 2020. "An electro-mechanical braking energy recovery system based on coil springs for energy saving applications in electric vehicles," Energy, Elsevier, vol. 200(C).
    19. Oluwasola O. Ademulegun & Patrick Keatley & Motasem Bani Mustafa & Neil J. Hewitt, 2020. "Energy Storage on a Distribution Network for Self-Consumption of Wind Energy and Market Value," Energies, MDPI, vol. 13(11), pages 1-17, May.

    More about this item

    Keywords

    Energy analysis; RTG crane;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:125:y:2017:i:c:p:337-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.