IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v116y2016ip1p933-941.html
   My bibliography  Save this article

Interaction between iron based compound and soot particles in diffusion flame

Author

Listed:
  • Kim, Kibum
  • Hahn, David W.

Abstract

Metallic fuel additives have been considered for soot emission control over the last few decades. However, the exact mechanisms of soot reduction are poorly understood and still remain controversial. In response to the need for identifying the state of the iron additive in the diffusion flame, laser-induced fluorescence and absorption spectroscopy were performed in a laboratory-scale isooctane diffusion laminar flame seeded with 4000 ppm iron pentacarbonyl as the metallic additive. The results of the spectroscopic techniques reveal that the dominant iron species throughout the primary flame region was Fe atoms, rather than any form of iron oxide. Moreover, elemental iron was observed to diminish through the soot oxidation region. The primary conclusion is that the catalytic effect of Fe atoms and possibly iron oxides enhanced soot oxidation in the burnout regime of the flame, thereby reducing the overall soot emissions.

Suggested Citation

  • Kim, Kibum & Hahn, David W., 2016. "Interaction between iron based compound and soot particles in diffusion flame," Energy, Elsevier, vol. 116(P1), pages 933-941.
  • Handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:933-941
    DOI: 10.1016/j.energy.2016.09.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216314049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chu, Huaqiang & Han, Weiwei & Cao, Wenjian & Gu, Mingyan & Xu, Guangju, 2019. "Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame," Energy, Elsevier, vol. 166(C), pages 392-400.
    2. Kang, Yinhu & Sun, Yuming & Lu, Xiaofeng & Gou, Xiaolong & Sun, Sicong & Yan, Jin & Song, Yangfan & Zhang, Pengyuan & Wang, Quanhai & Ji, Xuanyu, 2018. "Soot formation characteristics of ethylene premixed burner-stabilized stagnation flame with dimethyl ether addition," Energy, Elsevier, vol. 150(C), pages 709-721.
    3. Kim, Kibum & Kim, Hae Kwang, 2018. "Characterization of products from Fe(CO)5 seeded CO diffusion flame," Energy, Elsevier, vol. 148(C), pages 802-808.
    4. Li, Dun & Gao, Jianmin & Zhao, Ziqi & Du, Qian & Dong, Heming & Cui, Zhaoyang, 2022. "Effects of iron on coal pyrolysis-derived soot formation," Energy, Elsevier, vol. 249(C).
    5. Luo, Minye & Liu, Dong, 2018. "Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions," Energy, Elsevier, vol. 164(C), pages 642-654.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:933-941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.