IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v10y1985i10p1103-1111.html
   My bibliography  Save this article

Statistically adjusted engineering (SAE) models of end-use load curves

Author

Listed:
  • Train, Kenneth
  • Herriges, Joseph
  • Windle, Robert

Abstract

We develop and demonstrate models that combine engineering and statistical approaches to estimating customer-specific end-use load curves. Simulated end-use loads from engineering methods enter as explanatory variables in statistical models, and estimated parameters adjust the engineering loads on the basis of customers' observed loads. The resulting end-use loads, called statistically adjusted engineering (SAE) loads, depend on a variety of conditioning variables, including weather and the size and type of the customer's dwelling (which enter the engineering simulations) and the income and other characteristics of the household (which enter the statistical adjustment). Using data from a Los Angeles sample of households, several SAE models are estimated that differ in the flexibility that they allow in the adjustment of the engineering loads.

Suggested Citation

  • Train, Kenneth & Herriges, Joseph & Windle, Robert, 1985. "Statistically adjusted engineering (SAE) models of end-use load curves," Energy, Elsevier, vol. 10(10), pages 1103-1111.
  • Handle: RePEc:eee:energy:v:10:y:1985:i:10:p:1103-1111
    DOI: 10.1016/0360-5442(85)90025-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544285900258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(85)90025-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horowitz, Marvin J. & Bertoldi, Paolo, 2015. "A harmonized calculation model for transforming EU bottom-up energy efficiency indicators into empirical estimates of policy impacts," Energy Economics, Elsevier, vol. 51(C), pages 135-148.
    2. DeBenedictis, A. & Hoff, T.E. & Price, S. & Woo, C.K., 2010. "Statistically adjusted engineering (SAE) modeling of metered roof-top photovoltaic (PV) output: California evidence," Energy, Elsevier, vol. 35(10), pages 4178-4183.
    3. Grandjean, A. & Adnot, J. & Binet, G., 2012. "A review and an analysis of the residential electric load curve models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6539-6565.
    4. Mehrnaz Anvari & Elisavet Proedrou & Benjamin Schäfer & Christian Beck & Holger Kantz & Marc Timme, 2022. "Data-driven load profiles and the dynamics of residential electricity consumption," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Többen, Johannes & Schröder, Thomas, 2018. "A maximum entropy approach to the estimation of spatially and sectorally disaggregated electricity load curves," Applied Energy, Elsevier, vol. 225(C), pages 797-813.
    6. Zúñiga, K.V. & Castilla, I. & Aguilar, R.M., 2014. "Using fuzzy logic to model the behavior of residential electrical utility customers," Applied Energy, Elsevier, vol. 115(C), pages 384-393.
    7. Dong, Ming & Shi, Jian & Shi, Qingxin, 2020. "Multi-year long-term load forecast for area distribution feeders based on selective sequence learning," Energy, Elsevier, vol. 206(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:10:y:1985:i:10:p:1103-1111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.