IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v104y2016icp199-212.html
   My bibliography  Save this article

Hydrogen enhancement potential of synthetic biofuels manufacture in the European context: A techno-economic assessment

Author

Listed:
  • Hannula, Ilkka

Abstract

Potential to increase biofuels output from a gasification-based biorefinery using external hydrogen supply (enhancement) was investigated. Up to 2.6 or 3.1-fold increase in biofuel output could be attained for gasoline or methane production over reference plant configurations, respectively. Such enhanced process designs become economically attractive over non-enhanced designs when the average cost of low-carbon hydrogen falls below 2.2–2.8 €/kg, depending on the process configuration. If all sustainably available wastes and residues in the European Union (197 Mt/a) were collected and converted only to biofuels, using maximal hydrogen enhancement, the daily production would amount to 1.8–2.8 million oil equivalent barrels. This total supply of hydrogen enhanced biofuels could displace up to 41–63 per cent of the EU (European Union)'s road transport fuel demand in 2030, again depending on the choice of process design.

Suggested Citation

  • Hannula, Ilkka, 2016. "Hydrogen enhancement potential of synthetic biofuels manufacture in the European context: A techno-economic assessment," Energy, Elsevier, vol. 104(C), pages 199-212.
  • Handle: RePEc:eee:energy:v:104:y:2016:i:c:p:199-212
    DOI: 10.1016/j.energy.2016.03.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216303668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.
    2. Hannula, I. & Reiner, D., 2017. "The race to solve the sustainable transport problem via carbon-neutral synthetic fuels and battery electric vehicles," Cambridge Working Papers in Economics 1758, Faculty of Economics, University of Cambridge.
    3. Rodrigues, Renato & Pietzcker, Robert & Fragkos, Panagiotis & Price, James & McDowall, Will & Siskos, Pelopidas & Fotiou, Theofano & Luderer, Gunnar & Capros, Pantelis, 2022. "Narrative-driven alternative roads to achieve mid-century CO2 net neutrality in Europe," Energy, Elsevier, vol. 239(PA).
    4. Materazzi, Massimiliano & Holt, Andrew, 2019. "Experimental analysis and preliminary assessment of an integrated thermochemical process for production of low-molecular weight biofuels from municipal solid waste (MSW)," Renewable Energy, Elsevier, vol. 143(C), pages 663-678.
    5. Onarheim, Kristin & Hannula, Ilkka & Solantausta, Yrjö, 2020. "Hydrogen enhanced biofuels for transport via fast pyrolysis of biomass: A conceptual assessment," Energy, Elsevier, vol. 199(C).
    6. Hani Hussain Sait & Ahmed Hussain & Mohamed Bassyouni & Imtiaz Ali & Ramesh Kanthasamy & Bamidele Victor Ayodele & Yasser Elhenawy, 2022. "Hydrogen-Rich Syngas and Biochar Production by Non-Catalytic Valorization of Date Palm Seeds," Energies, MDPI, vol. 15(8), pages 1-13, April.
    7. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    8. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Gadsbøll, Rasmus Østergaard & Clausen, Lasse Røngaard & Thomsen, Tobias Pape & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2019. "Flexible TwoStage biomass gasifier designs for polygeneration operation," Energy, Elsevier, vol. 166(C), pages 939-950.
    10. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    11. Qin, Shiyue & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2022. "Opportunities for renewable electricity utilization in coal to liquid fuels process: Thermodynamic and techo-economic analysis," Energy, Elsevier, vol. 239(PA).
    12. Lindroos, Tomi J. & Mäki, Elina & Koponen, Kati & Hannula, Ilkka & Kiviluoma, Juha & Raitila, Jyrki, 2021. "Replacing fossil fuels with bioenergy in district heating – Comparison of technology options," Energy, Elsevier, vol. 231(C).
    13. Anetjärvi, Eemeli & Vakkilainen, Esa & Melin, Kristian, 2023. "Benefits of hybrid production of e-methanol in connection with biomass gasification," Energy, Elsevier, vol. 276(C).
    14. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    15. Nicolaus Dahmen & Johannes Abeln & Mark Eberhard & Thomas Kolb & Hans Leibold & Jörg Sauer & Dieter Stapf & Bernd Zimmerlin, 2017. "The bioliq process for producing synthetic transportation fuels," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    16. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    17. Goffé, Jonathan & Ferrasse, Jean-Henry, 2019. "Stoichiometry impact on the optimum efficiency of biomass conversion to biofuels," Energy, Elsevier, vol. 170(C), pages 438-458.
    18. Sorknæs, P. & Lund, Henrik & Skov, I.R. & Djørup, S. & Skytte, K. & Morthorst, P.E. & Fausto, F., 2020. "Smart Energy Markets - Future electricity, gas and heating markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:104:y:2016:i:c:p:199-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.