IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v42y2012i1p35-45.html
   My bibliography  Save this article

Optimal power flow solutions through multi-objective programming

Author

Listed:
  • Salgado, R.S.
  • Rangel, E.L.

Abstract

Despite the progress achieved in the development of optimal power flow (OPF) programs, most of the solution techniques reported in the literature suffer from the difficulty of dealing with objective functions of different natures at the same time. However, the need for alternative power network solutions during the planning of a power system operation requires the optimization of several performance indexes simultaneously. In this study, attention is focused on the modelling and solution of a parameterized multi-objective OPF problem. The proposed OPF model combines two classical multi-objective optimization approaches, the weighted sum and the constraint methods, through a parameterization scheme to manipulate the objective functions. This parameterization allows relaxation of the constraints imposed to handle the performance indexes, to facilitate the convergence of the iterative process. The resulting optimization problem, which ultimately is a mono-objective optimization problem, is solved through the nonlinear version of the predictor–corrector interior point method. The IEEE 24-bus test system was used to obtain the numerical results of the computational simulation.

Suggested Citation

  • Salgado, R.S. & Rangel, E.L., 2012. "Optimal power flow solutions through multi-objective programming," Energy, Elsevier, vol. 42(1), pages 35-45.
  • Handle: RePEc:eee:energy:v:42:y:2012:i:1:p:35-45
    DOI: 10.1016/j.energy.2011.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211007584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pourakbari-Kasmaei, Mahdi & Rider, Marcos J. & Mantovani, José R.S., 2014. "An unequivocal normalization-based paradigm to solve dynamic economic and emission active-reactive OPF (optimal power flow)," Energy, Elsevier, vol. 73(C), pages 554-566.
    2. Lin, Shin-Yeu & Lin, Ai-Chih, 2014. "RLOPF (risk-limiting optimal power flow) for systems with high penetration of wind power," Energy, Elsevier, vol. 71(C), pages 49-61.
    3. Zhang, Jingrui & Wang, Silu & Tang, Qinghui & Zhou, Yulu & Zeng, Tao, 2019. "An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems," Energy, Elsevier, vol. 172(C), pages 945-957.
    4. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    5. Lin, Shin-Yeu & Chen, Jyun-Fu, 2013. "Distributed optimal power flow for smart grid transmission system with renewable energy sources," Energy, Elsevier, vol. 56(C), pages 184-192.
    6. Shin-Yeu Lin & Ai-Chih Lin, 2016. "Risk-Limiting Scheduling of Optimal Non-Renewable Power Generation for Systems with Uncertain Power Generation and Load Demand," Energies, MDPI, vol. 9(11), pages 1-16, October.
    7. Xuanhu He & Wei Wang & Jiuchun Jiang & Lijie Xu, 2015. "An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow," Energies, MDPI, vol. 8(4), pages 1-26, March.
    8. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    9. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Incorporating load variation and variable wind generation in service restoration plans for distribution systems," Energy, Elsevier, vol. 57(C), pages 682-691.
    10. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    11. Ghasemi, Mojtaba & Ghavidel, Sahand & Akbari, Ebrahim & Vahed, Ali Azizi, 2014. "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos," Energy, Elsevier, vol. 73(C), pages 340-353.
    12. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    13. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation," Energy, Elsevier, vol. 59(C), pages 698-707.
    14. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:42:y:2012:i:1:p:35-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.