IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v74y2014is1ps16-s23.html
   My bibliography  Save this article

Sustainability of light water reactor fuel cycles

Author

Listed:
  • Rothwell, Geoffrey
  • Wood, Thomas W.
  • Daly, Don
  • Weimar, Mark R.

Abstract

This paper compares the sustainability of two light water reactor, LWR, fuel cycles: the once-through UOX (low-enriched uranium oxide) cycle and the twice-through MOX (Mixed Uranium-Plutonium Oxide) cycle (increasing the input efficiency of available uranium) by assessing their probable long-term competitiveness. With the retirement of diffusion enrichment facilities, enrichment prices have declined by one-third since 2009 and are likely to remain below $100-kgSWU for the foreseeable future. Here, initial uranium prices are set at $90/kgU and reprocessing costs at $2500 per kilogram of heavy-metal throughput, representative of “new-build” costs for reprocessing facilities. Substantial reprocessing cost reductions must be achieved if MOX is to be competitive, i.e., if it is to improve the sustainability of the LWR. However, results indicate that preserving the MOX alternative for spent fuel management later in this century has a large present value under several sets of assumptions regarding uranium price increases and reprocessing cost decreases.

Suggested Citation

  • Rothwell, Geoffrey & Wood, Thomas W. & Daly, Don & Weimar, Mark R., 2014. "Sustainability of light water reactor fuel cycles," Energy Policy, Elsevier, vol. 74(S1), pages 16-23.
  • Handle: RePEc:eee:enepol:v:74:y:2014:i:s1:p:s16-s23
    DOI: 10.1016/j.enpol.2014.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514004467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louberge, Henri & Villeneuve, Stephane & Chesney, Marc, 2002. "Long-term risk management of nuclear waste: a real options approach," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 157-180, November.
    2. Masahiko Aoki & Geoffrey Rothwell, 2013. "A comparative institutional analysis of the Fukushima nuclear disaster: Lessons and policy implications," Chapters, in: Comparative Institutional Analysis, chapter 8, pages 105-132, Edward Elgar Publishing.
    3. Geoffrey Rothwell, 2006. "A Real Options Approach to Evaluating New Nuclear Power Plants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 37-53.
    4. Rothwell, Geoffrey, 2010. "International light water nuclear fuel fabrication supply: Are fabrication services assured?," Energy Economics, Elsevier, vol. 32(3), pages 538-544, May.
    5. Masahiko Aoki, 2013. "Comparative Institutional Analysis," Books, Edward Elgar Publishing, number 15474.
    6. Geoffrey Rothwell, 2006. "A Real Options Approach to Evaluating New Nuclear Power Plants," The Energy Journal, , vol. 27(1), pages 37-54, January.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. De Roo, Guillaume & Parsons, John E., 2011. "A methodology for calculating the levelized cost of electricity in nuclear power systems with fuel recycling," Energy Economics, Elsevier, vol. 33(5), pages 826-839, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Yeonju & Park, Eunil, 2020. "Social acceptance of nuclear power plants in Korea: The role of public perceptions following the Fukushima accident," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    3. Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.
    4. Geoffrey Rothwell, 2010. "New U.S. Nuclear Generation: 2010-2030," Discussion Papers 09-025, Stanford Institute for Economic Policy Research.
    5. Kessides, Ioannis N., 2010. "Nuclear power: Understanding the economic risks and uncertainties," Energy Policy, Elsevier, vol. 38(8), pages 3849-3864, August.
    6. Yanbin Li & Min Wu & Zhen Li, 2018. "A Real Options Analysis for Renewable Energy Investment Decisions under China Carbon Trading Market," Energies, MDPI, vol. 11(7), pages 1-10, July.
    7. Westner, Günther & Madlener, Reinhard, 2012. "Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis," Energy Economics, Elsevier, vol. 34(1), pages 31-44.
    8. Daniel Ziegler & Katrin Schmitz & Christoph Weber, 2012. "Optimal electricity generation portfolios," Computational Management Science, Springer, vol. 9(3), pages 381-399, August.
    9. Lee, Shun-Chung, 2011. "Using real option analysis for highly uncertain technology investments: The case of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4443-4450.
    10. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    11. Monjas-Barroso, Manuel & Balibrea-Iniesta, José, 2013. "Valuation of projects for power generation with renewable energy: A comparative study based on real regulatory options," Energy Policy, Elsevier, vol. 55(C), pages 335-352.
    12. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    13. Hampe, Jona & Madlener, Reinhard, 2012. "Economics of High-Temperature Nuclear Reactors for Industrial Cogeneration," FCN Working Papers 10/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    14. Cardin, Michel-Alexandre & Zhang, Sizhe & Nuttall, William J., 2017. "Strategic real option and flexibility analysis for nuclear power plants considering uncertainty in electricity demand and public acceptance," Energy Economics, Elsevier, vol. 64(C), pages 226-237.
    15. Siddiqui, Afzal S. & Marnay, Chris & Wiser, Ryan H., 2007. "Real options valuation of US federal renewable energy research, development, demonstration, and deployment," Energy Policy, Elsevier, vol. 35(1), pages 265-279, January.
    16. Casper Agaton, 2017. "Coal, Renewable, or Nuclear? A Real Options Approach to Energy Investments in the Philippines," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 6(2), pages 50-62.
    17. Niematallah Elamin & Mototsugu Fukushige, 2017. "The 2011 Japanese energy crisis: Effects on the magnitude and pattern of load demand," Discussion Papers in Economics and Business 17-19, Osaka University, Graduate School of Economics.
    18. Botterud, Audun & Yildiz, Bilge & Conzelmann, Guenter & Petri, Mark C., 2008. "Nuclear hydrogen: An assessment of product flexibility and market viability," Energy Policy, Elsevier, vol. 36(10), pages 3961-3973, October.
    19. Michail Chronopoulos, Verena Hagspiel, and Stein-Erik Fleten, 2016. "Stepwise Green Investment under Policy Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    20. Chuanwang Sun & Nan Lyu & Xiaoling Ouyang, 2014. "Chinese Public Willingness to Pay to Avoid Having Nuclear Power Plants in the Neighborhood," Sustainability, MDPI, vol. 6(10), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:74:y:2014:i:s1:p:s16-s23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.