IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v68y2014icp383-393.html
   My bibliography  Save this article

The impact of European balancing rules on wind power economics and on short-term bidding strategies

Author

Listed:
  • Chaves-Ávila, J.P.
  • Hakvoort, R.A.
  • Ramos, A.

Abstract

Wind power represents a significant percentage of the European generation mix and this will increase to fulfill the renewable energy targets. Different balancing rules are applied to wind power among the countries; for instance, to what extent wind power producers (WPPs) are responsible for the energy imbalances and how those imbalances are penalized. This paper discusses those different rules and evaluates their effects on WPP bidding strategies. To do so, a quantitative analysis is presented for an offshore wind farm, considering the differences in the balancing rules and prices of Belgium, Denmark, Germany and the Netherlands. The quantitative approach consists of a stochastic optimization model that maximizes the profits of a WPP by trading in different markets (day-ahead and intraday) and computes the final energy delivered. The model considers uncertainties of most important parameters such as wind energy forecasts and prices at different time frames. The results show that the imbalance pricing design and the allocation of balance responsibility significantly affect WPP’ revenues. Additionally, WPPs deviate differently from the expected energy depending on the balancing rules, which can impact the system. Furthermore, these balancing rules should be considered with other market regulations, such as the design of support schemes.

Suggested Citation

  • Chaves-Ávila, J.P. & Hakvoort, R.A. & Ramos, A., 2014. "The impact of European balancing rules on wind power economics and on short-term bidding strategies," Energy Policy, Elsevier, vol. 68(C), pages 383-393.
  • Handle: RePEc:eee:enepol:v:68:y:2014:i:c:p:383-393
    DOI: 10.1016/j.enpol.2014.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514000159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klessmann, Corinna & Nabe, Christian & Burges, Karsten, 2008. "Pros and cons of exposing renewables to electricity market risks--A comparison of the market integration approaches in Germany, Spain, and the UK," Energy Policy, Elsevier, vol. 36(10), pages 3646-3661, October.
    2. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes: A case study of the German market premium," UFZ Discussion Papers 4/2013, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Hiroux, C. & Saguan, M., 2010. "Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs?," Energy Policy, Elsevier, vol. 38(7), pages 3135-3145, July.
    4. Rivier Abbad, Juan, 2010. "Electricity market participation of wind farms: the success story of the Spanish pragmatism," Energy Policy, Elsevier, vol. 38(7), pages 3174-3179, July.
    5. De Vos, Kristof & Driesen, Johan & Belmans, Ronnie, 2011. "Assessment of imbalance settlement exemptions for offshore wind power generation in Belgium," Energy Policy, Elsevier, vol. 39(3), pages 1486-1494, March.
    6. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes—A case study of the German market premium," Energy Policy, Elsevier, vol. 61(C), pages 599-609.
    7. Weber, Christoph, 2010. "Adequate intraday market design to enable the integration of wind energy into the European power systems," Energy Policy, Elsevier, vol. 38(7), pages 3155-3163, July.
    8. Chaves-Ávila, José Pablo & Hakvoort, Rudi A. & Ramos, Andrés, 2013. "Short-term strategies for Dutch wind power producers to reduce imbalance costs," Energy Policy, Elsevier, vol. 52(C), pages 573-582.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernandes, Camila & Frías, Pablo & Reneses, Javier, 2016. "Participation of intermittent renewable generators in balancing mechanisms: A closer look into the Spanish market design," Renewable Energy, Elsevier, vol. 89(C), pages 305-316.
    2. Schwidtal, Jan Marc & Agostini, Marco & Coppo, Massimiliano & Bignucolo, Fabio & Lorenzoni, Arturo, 2023. "Optimized operation of distributed energy resources: The opportunities of value stacking for Power-to-Gas aggregated with PV," Applied Energy, Elsevier, vol. 334(C).
    3. Zengqiang Mi & Yulong Jia & Junjie Wang & Xiaoming Zheng, 2018. "Optimal Scheduling Strategies of Distributed Energy Storage Aggregator in Energy and Reserve Markets Considering Wind Power Uncertainties," Energies, MDPI, vol. 11(5), pages 1-17, May.
    4. Wu, Zhaoyuan & Zhou, Ming & Li, Gengyin & Zhao, Tong & Zhang, Yan & Liu, Xiaojuan, 2020. "Interaction between balancing market design and market behaviour of wind power producers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Yu, Yang & Chen, Lin & Liu, Rui, 2023. "The source of wind power producers’ market power," Energy Policy, Elsevier, vol. 173(C).
    6. Heeseung Moon & Dongsu Lee & Jeongmin Han & Yongtae Yoon & Seungwan Kim, 2021. "Impact of Imbalance Pricing on Variable Renewable Energies with Different Prediction Accuracies: A Korean Case," Energies, MDPI, vol. 14(13), pages 1-19, July.
    7. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    8. Lobato, E. & Doenges, K. & Egido, I. & Sigrist, L., 2020. "Limits to wind aggregation: Empirical assessment in the Spanish electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 1321-1330.
    9. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium: An instrument-based estimation of supply and demand for imbalance energy," Energy Economics, Elsevier, vol. 102(C).
    10. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    11. Frade, Pedro M.S. & Pereira, João Pedro & Santana, J.J.E. & Catalão, J.P.S., 2019. "Wind balancing costs in a power system with high wind penetration – Evidence from Portugal," Energy Policy, Elsevier, vol. 132(C), pages 702-713.
    12. Karakoyun, Ece Cigdem & Avci, Harun & Kocaman, Ayse Selin & Nadar, Emre, 2023. "Deviations from commitments: Markov decision process formulations for the role of energy storage," International Journal of Production Economics, Elsevier, vol. 255(C).
    13. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    14. Christopher Koch & Philipp Maskos, 2020. "Passive Balancing Through Intraday Trading: Whether Interactions Between Short-term Trading and Balancing Stabilize Germany s Electricity System," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 101-112.
    15. Joan Batalla-Bejerano & Elisa Trujillo-Baute, 2015. "Analysing the sensitivity of electricity system operational costs to deviations in supply and demand," Working Papers 2015/8, Institut d'Economia de Barcelona (IEB).
    16. de Jong, Jacques & Hassel, Arndt & Egenhofer, Christian & Jansen, Jaap & Xu, Zheng, 2017. "Improving the Market for Flexibility in the Electricity Sector," CEPS Papers 13093, Centre for European Policy Studies.
    17. Burger, Scott & Chaves-Ávila, Jose Pablo & Batlle, Carlos & Pérez-Arriaga, Ignacio J., 2017. "A review of the value of aggregators in electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 395-405.
    18. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Klyve, Øyvind Sommer & Klæboe, Gro & Nygård, Magnus Moe & Marstein, Erik Stensrud, 2023. "Limiting imbalance settlement costs from variable renewable energy sources in the Nordics: Internal balancing vs. balancing market participation," Applied Energy, Elsevier, vol. 350(C).
    20. Gao, Cuixia & Sun, Mei & Geng, Yong & Wu, Rui & Chen, Wei, 2016. "A bibliometric analysis based review on wind power price," Applied Energy, Elsevier, vol. 182(C), pages 602-612.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Working Papers EPRG 1329, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    3. Wu, Zhaoyuan & Zhou, Ming & Li, Gengyin & Zhao, Tong & Zhang, Yan & Liu, Xiaojuan, 2020. "Interaction between balancing market design and market behaviour of wind power producers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    5. Chaves-Ávila, J.P. & Fernandes, C., 2015. "The Spanish intraday market design: A successful solution to balance renewable generation?," Renewable Energy, Elsevier, vol. 74(C), pages 422-432.
    6. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    7. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    8. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    9. Chaves-Ávila, José Pablo & van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2014. "The interplay between imbalance pricing mechanisms and network congestions – Analysis of the German electricity market," Utilities Policy, Elsevier, vol. 28(C), pages 52-61.
    10. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    11. Henriot, Arthur & Glachant, Jean-Michel, 2013. "Melting-pots and salad bowls: The current debate on electricity market design for integration of intermittent RES," Utilities Policy, Elsevier, vol. 27(C), pages 57-64.
    12. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    13. Arthur Henriot, 2012. "Market design with wind: managing low-predictability in intraday markets," RSCAS Working Papers 2012/63, European University Institute.
    14. Fatih Karanfil and Yuanjing Li, 2017. "The Role of Continuous Intraday Electricity Markets: The Integration of Large-Share Wind Power Generation in Denmark," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    15. Wolfgang Buchholz & Jonas Frank & Hans-Dieter Karl & Johannes Pfeiffer & Karen Pittel & Ursula Triebswetter & Jochen Habermann & Wolfgang Mauch & Thomas Staudacher, 2012. "Die Zukunft der Energiemärkte: Ökonomische Analyse und Bewertung von Potenzialen und Handlungsmöglichkeiten," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 57.
    16. Bueno-Lorenzo, Miriam & Moreno, M. Ángeles & Usaola, Julio, 2013. "Analysis of the imbalance price scheme in the Spanish electricity market: A wind power test case," Energy Policy, Elsevier, vol. 62(C), pages 1010-1019.
    17. Moradi-Dalvand, M. & Mohammadi-Ivatloo, B. & Amjady, N. & Zareipour, H. & Mazhab-Jafari, A., 2015. "Self-scheduling of a wind producer based on Information Gap Decision Theory," Energy, Elsevier, vol. 81(C), pages 588-600.
    18. Zipp, Alexander, 2015. "Revenue prospects of photovoltaic in Germany—Influence opportunities by variation of the plant orientation," Energy Policy, Elsevier, vol. 81(C), pages 86-97.
    19. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Virag, Ana & Gibescu, Madeleine, 2022. "Short term wholesale electricity market designs: A review of identified challenges and promising solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Lina Silva-Rodriguez & Anibal Sanjab & Elena Fumagalli & Ana Virag & Madeleine Gibescu, 2020. "Short Term Electricity Market Designs: Identified Challenges and Promising Solutions," Papers 2011.04587, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:68:y:2014:i:c:p:383-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.