IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v65y2014icp245-250.html
   My bibliography  Save this article

Engineering and energy yield: The missing dimension of wind turbine assessment

Author

Listed:
  • Sturge, D.
  • While, A.
  • Howell, R.

Abstract

The goal of optimising the energy yield of renewables sits uneasily with the politics and processes of planning for wind turbines. In countries such as the UK the land-use planning consent regime is not concerned with the energy yield of proposed wind developments. This is a matter for the developer rather than the regulator, which might seem curious given the policy commitment to maximising the potential for renewable energy generation and the need to weigh up local environmental impacts with emissions reduction. In this paper, we highlight and investigate the implications of the exclusion of energy yield from wind turbine regulation. The case is made for increasing the weight given to energy yield within Environmental Impact Assessment and the land-use planning process.

Suggested Citation

  • Sturge, D. & While, A. & Howell, R., 2014. "Engineering and energy yield: The missing dimension of wind turbine assessment," Energy Policy, Elsevier, vol. 65(C), pages 245-250.
  • Handle: RePEc:eee:enepol:v:65:y:2014:i:c:p:245-250
    DOI: 10.1016/j.enpol.2013.10.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513010756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.10.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sperling, Karl & Hvelplund, Frede & Mathiesen, Brian Vad, 2010. "Evaluation of wind power planning in Denmark – Towards an integrated perspective," Energy, Elsevier, vol. 35(12), pages 5443-5454.
    2. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2012. "Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation," Renewable Energy, Elsevier, vol. 38(1), pages 16-30.
    3. Husien, Walid & El-Osta, Wedad & Dekam, Elhadi, 2013. "Effect of the wake behind wind rotor on optimum energy output of wind farms," Renewable Energy, Elsevier, vol. 49(C), pages 128-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huesca-Pérez, María Elena & Sheinbaum-Pardo, Claudia & Köppel, Johann, 2016. "Social implications of siting wind energy in a disadvantaged region – The case of the Isthmus of Tehuantepec, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 952-965.
    2. Sturge, D. & Sobotta, D. & Howell, R. & While, A. & Lou, J., 2015. "A hybrid actuator disc – Full rotor CFD methodology for modelling the effects of wind turbine wake interactions on performance," Renewable Energy, Elsevier, vol. 80(C), pages 525-537.
    3. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    4. Ilkiliç, Cumali & Aydin, Hüseyin, 2015. "Wind power potential and usage in the coastal regions of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 78-86.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emin Sertaç Ari & Cevriye Gencer, 2020. "Proposal of a novel mixed integer linear programming model for site selection of a wind power plant based on power maximization with use of mixed type wind turbines," Energy & Environment, , vol. 31(5), pages 825-841, August.
    2. Baheri, Ali & Ramaprabhu, Praveen & Vermillion, Christopher, 2018. "Iterative 3D layout optimization and parametric trade study for a reconfigurable ocean current turbine array using Bayesian Optimization," Renewable Energy, Elsevier, vol. 127(C), pages 1052-1063.
    3. Mittal, Prateek & Kulkarni, Kedar & Mitra, Kishalay, 2016. "A novel hybrid optimization methodology to optimize the total number and placement of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 133-147.
    4. Johansen, Katinka, 2021. "Blowing in the wind: A brief history of wind energy and wind power technologies in Denmark," Energy Policy, Elsevier, vol. 152(C).
    5. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    6. Zhu, Wei Jun & Shen, Wen Zhong & Sørensen, Jens Nørkær & Yang, Hua, 2017. "Verification of a novel innovative blade root design for wind turbines using a hybrid numerical method," Energy, Elsevier, vol. 141(C), pages 1661-1670.
    7. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    8. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    9. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    10. Shen, Wen Zhong & Zhu, Wei Jun & Barlas, Emre & Li, Ye, 2019. "Advanced flow and noise simulation method for wind farm assessment in complex terrain," Renewable Energy, Elsevier, vol. 143(C), pages 1812-1825.
    11. Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
    12. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    13. Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús & González Rodríguez, Ángel Gaspar, 2015. "Maximizing the overall production of wind farms by setting the individual operating point of wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 219-229.
    14. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    15. Wang, Longyan & Tan, Andy & Gu, Yuantong, 2016. "A novel control strategy approach to optimally design a wind farm layout," Renewable Energy, Elsevier, vol. 95(C), pages 10-21.
    16. Jong-Hyeon Shin & Jong-Hwi Lee & Se-Myong Chang, 2019. "A Simplified Numerical Model for the Prediction of Wake Interaction in Multiple Wind Turbines," Energies, MDPI, vol. 12(21), pages 1-14, October.
    17. Guoqing Huang & Yao Chen & Ke Li & Jiangke Luo & Sai Zhang & Mingming Lv, 2024. "A Two-Step Grid–Coordinate Optimization Method for a Wind Farm with a Regular Layout Using a Genetic Algorithm," Energies, MDPI, vol. 17(13), pages 1-22, July.
    18. Yildiz, Anil & Mern, John & Kochenderfer, Mykel J. & Howland, Michael F., 2023. "Towards sequential sensor placements on a wind farm to maximize lifetime energy and profit," Renewable Energy, Elsevier, vol. 216(C).
    19. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    20. Santos-Alamillos, F.J. & Thomaidis, N.S. & Usaola-García, J. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2017. "Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain," Renewable Energy, Elsevier, vol. 106(C), pages 335-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:65:y:2014:i:c:p:245-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.