IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v59y2013icp213-225.html
   My bibliography  Save this article

A combined modeling approach for wind power feed-in and electricity spot prices

Author

Listed:
  • Keles, Dogan
  • Genoese, Massimo
  • Möst, Dominik
  • Ortlieb, Sebastian
  • Fichtner, Wolf

Abstract

Wind power generation and its impacts on electricity prices has strongly increased in the EU. Therefore, appropriate mark-to-market evaluation of new investments in wind power and energy storage plants should consider the fluctuant generation of wind power and uncertain electricity prices, which are affected by wind power feed-in (WPF). To gain the input data for WPF and electricity prices, simulation models, such as econometric models, can serve as a data basis.

Suggested Citation

  • Keles, Dogan & Genoese, Massimo & Möst, Dominik & Ortlieb, Sebastian & Fichtner, Wolf, 2013. "A combined modeling approach for wind power feed-in and electricity spot prices," Energy Policy, Elsevier, vol. 59(C), pages 213-225.
  • Handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:213-225
    DOI: 10.1016/j.enpol.2013.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513001821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.03.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    2. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    3. Bode, Sven & Groscurth, Helmuth-Michael, 2006. "Zur Wirkung des EEG auf den "Strompreis"," HWWA Discussion Papers 348, Hamburg Institute of International Economics (HWWA).
    4. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2007. "The merit-order effect: a detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Working Papers "Sustainability and Innovation" S7/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    5. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    6. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Jónsson, Tryggvi & Pinson, Pierre & Madsen, Henrik, 2010. "On the market impact of wind energy forecasts," Energy Economics, Elsevier, vol. 32(2), pages 313-320, March.
    9. Keles, Dogan & Genoese, Massimo & Möst, Dominik & Fichtner, Wolf, 2012. "Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices," Energy Economics, Elsevier, vol. 34(4), pages 1012-1032.
    10. Safari, Bonfils, 2011. "Modeling wind speed and wind power distributions in Rwanda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 925-935, February.
    11. Gökçek, Murat & Bayülken, Ahmet & Bekdemir, Şükrü, 2007. "Investigation of wind characteristics and wind energy potential in Kirklareli, Turkey," Renewable Energy, Elsevier, vol. 32(10), pages 1739-1752.
    12. Lise, Wietze & Linderhof, Vincent & Kuik, Onno & Kemfert, Claudia & Ostling, Robert & Heinzow, Thomas, 2006. "A game theoretic model of the Northwestern European electricity market--market power and the environment," Energy Policy, Elsevier, vol. 34(15), pages 2123-2136, October.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Bunn, Derek, 2016. "Weather and market specificities in the regional transmission of renewable energy price effects," Energy, Elsevier, vol. 114(C), pages 188-200.
    2. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    3. Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
    4. Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
    5. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    6. Hain, Martin & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2018. "Managing renewable energy production risk," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 1-19.
    7. Ciara O'Dwyer & L. (Lisa B.) Ryan & Damian Flynn, 2017. "Efficient large-scale energy storage dispatch: challenges in future high renewables systems," Open Access publications 10197/9103, School of Economics, University College Dublin.
    8. Ederer, Nikolaus, 2015. "The market value and impact of offshore wind on the electricity spot market: Evidence from Germany," Applied Energy, Elsevier, vol. 154(C), pages 805-814.
    9. Luňáčková, Petra & Průša, Jan & Janda, Karel, 2017. "The merit order effect of Czech photovoltaic plants," Energy Policy, Elsevier, vol. 106(C), pages 138-147.
    10. François Benhmad & Jacques Percebois, 2016. "Wind power feed-in impact on electricity prices in Germany 2009-2013," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 13(1), pages 81-96, June.
    11. Christian Pape & Arne Vogler & Oliver Woll & Christoph Weber, 2017. "Forecasting the distributions of hourly electricity spot prices," EWL Working Papers 1705, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised May 2017.
    12. Martin de Lagarde, Cyril & Lantz, Frédéric, 2018. "How renewable production depresses electricity prices: Evidence from the German market," Energy Policy, Elsevier, vol. 117(C), pages 263-277.
    13. Hain, Martin & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2017. "An Electricity Price Modeling Framework for Renewable-Dominant Markets," Working Paper Series in Production and Energy 23, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    14. Panos, Evangelos & Densing, Martin, 2019. "The future developments of the electricity prices in view of the implementation of the Paris Agreements: Will the current trends prevail, or a reversal is ahead?," Energy Economics, Elsevier, vol. 84(C).
    15. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    16. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    17. Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2022. "An integrated model for electricity market coupling simulations: Evidence from the European power market crossroad," Utilities Policy, Elsevier, vol. 79(C).
    18. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    19. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Efficient modeling and forecasting of electricity spot prices," Energy Economics, Elsevier, vol. 47(C), pages 98-111.
    20. Michele Fiorelli & Dogan Keles & Francesco Montana & Giovanni Lorenzo Restifo & Eleonora Riva Sanseverino & Gaetano Zizzo, 2020. "Evaluation of the Administrative Phase-Out of Coal Power Plants on the Italian Electricity Market," Energies, MDPI, vol. 13(18), pages 1-24, September.
    21. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Energy Economics, Elsevier, vol. 51(C), pages 430-444.
    22. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    23. Gao, Cuixia & Sun, Mei & Geng, Yong & Wu, Rui & Chen, Wei, 2016. "A bibliometric analysis based review on wind power price," Applied Energy, Elsevier, vol. 182(C), pages 602-612.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keles, Dogan & Genoese, Massimo & Möst, Dominik & Fichtner, Wolf, 2012. "Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices," Energy Economics, Elsevier, vol. 34(4), pages 1012-1032.
    2. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    3. Paraschiv, Florentina, 2013. "Price Dynamics in Electricity Markets," Working Papers on Finance 1314, University of St. Gallen, School of Finance.
    4. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    5. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    6. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    7. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    8. Pineau, Pierre-Olivier & Rasata, Hasina & Zaccour, Georges, 2011. "Impact of some parameters on investments in oligopolistic electricity markets," European Journal of Operational Research, Elsevier, vol. 213(1), pages 180-195, August.
    9. Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.
    10. Chevallier, Julien & Ielpo, Florian, 2017. "Investigating the leverage effect in commodity markets with a recursive estimation approach," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 763-778.
    11. Caporin, Massimiliano & Preś, Juliusz & Torro, Hipolit, 2012. "Model based Monte Carlo pricing of energy and temperature Quanto options," Energy Economics, Elsevier, vol. 34(5), pages 1700-1712.
    12. Sumudu W. Watugala, 2015. "Economic Uncertainty and Commodity Futures Volatility," Working Papers 15-14, Office of Financial Research, US Department of the Treasury.
    13. Segnon Mawuli & Wilfling Bernd & Lau Chi Keung & Gupta Rangan, 2022. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.
    14. Li, Bingxin, 2019. "Pricing dynamics of natural gas futures," Energy Economics, Elsevier, vol. 78(C), pages 91-108.
    15. repec:dau:papers:123456789/15247 is not listed on IDEAS
    16. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
    17. Samet Gunay & Audil Rashid Khaki, 2018. "Best Fitting Fat Tail Distribution for the Volatilities of Energy Futures: Gev, Gat and Stable Distributions in GARCH and APARCH Models," JRFM, MDPI, vol. 11(2), pages 1-19, June.
    18. Kanamura, Takashi, 2009. "A supply and demand based volatility model for energy prices," Energy Economics, Elsevier, vol. 31(5), pages 736-747, September.
    19. Yepes Rodri­guez, Ramón, 2008. "Real option valuation of free destination in long-term liquefied natural gas supplies," Energy Economics, Elsevier, vol. 30(4), pages 1909-1932, July.
    20. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    21. Paraschiv, Florentina & Fleten, Stein-Erik & Schürle, Michael, 2015. "A spot-forward model for electricity prices with regime shifts," Energy Economics, Elsevier, vol. 47(C), pages 142-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:213-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.