IDEAS home Printed from https://ideas.repec.org/a/taf/tjomxx/v12y2016i2p324-333.html
   My bibliography  Save this article

A geographic approach to carbon accounting of Wisconsin

Author

Listed:
  • Wei Huang
  • Chengbin Deng

Abstract

Carbon accounting is becoming increasingly important in the way it provides a comprehensive perspective of carbon balance from both carbon emission and carbon assimilation. Numerous previous researches have focused on carbon emission inventory, but few have put their effort in estimating the overall carbon balance as well as analyzing its spatial distribution. In this study, the fossil fuel consumption from all end-use sectors was used to estimate the carbon emission, and the carbon assimilation of vegetation was derived from Moderate Resolution Imaging Spectroradiometer net primary production. Then, the carbon emission was integrated with carbon assimilation to estimate carbon balance. The results were presented in five different maps with a scale of 1:1,480,000 and suggested that, in 2009, Wisconsin was able to assimilate its all end-use carbon emissions through the vegetation. In addition, carbon surplus and carbon deficit of Wisconsin demonstrated their respective spatial patterns. The approach can be generalized and applied to other regions to estimate carbon balance.

Suggested Citation

  • Wei Huang & Chengbin Deng, 2016. "A geographic approach to carbon accounting of Wisconsin," Journal of Maps, Taylor & Francis Journals, vol. 12(2), pages 324-333, March.
  • Handle: RePEc:taf:tjomxx:v:12:y:2016:i:2:p:324-333
    DOI: 10.1080/17445647.2015.1020892
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17445647.2015.1020892
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17445647.2015.1020892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K. & Brown, Marilyn A., 2010. "Twelve metropolitan carbon footprints: A preliminary comparative global assessment," Energy Policy, Elsevier, vol. 38(9), pages 4856-4869, September.
    2. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    3. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    4. Shi, Anqing, 2003. "The impact of population pressure on global carbon dioxide emissions, 1975-1996: evidence from pooled cross-country data," Ecological Economics, Elsevier, vol. 44(1), pages 29-42, February.
    5. T. Blasing & Christine Broniak & Gregg Marland, 2005. "State-By-State Carbon Dioxide Emissions from Fossil Fuel Use in the United States 1960–2000," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 10(4), pages 659-674, October.
    6. Steenge, Albert E., 1999. "Input-output theory and institutional aspects of environmental policy," Structural Change and Economic Dynamics, Elsevier, vol. 10(1), pages 161-176, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    2. Lazarus, Michael & Chandler, Chelsea & Erickson, Peter, 2013. "A core framework and scenario for deep GHG reductions at the city scale," Energy Policy, Elsevier, vol. 57(C), pages 563-574.
    3. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    4. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    5. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    6. Pu Lyu & Yongjie Lin & Yuanqing Wang, 2019. "The impacts of household features on commuting carbon emissions: a case study of Xi’an, China," Transportation, Springer, vol. 46(3), pages 841-857, June.
    7. Dong, Huijuan & Geng, Yong & Xi, Fengming & Fujita, Tsuyoshi, 2013. "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach," Energy Policy, Elsevier, vol. 57(C), pages 298-307.
    8. Yang, Jin & Chen, Bin, 2014. "Carbon footprint estimation of Chinese economic sectors based on a three-tier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 499-507.
    9. Ferng, Jiun-Jiun, 2011. "Measuring and locating footprints: A case study of Taiwan's rice and wheat consumption footprint," Ecological Economics, Elsevier, vol. 71(C), pages 191-201.
    10. Felipe Avilés-Lucero & Gabriel Peraita & Camilo Valladares, 2021. "Huella de Carbono para la Economía Chilena 2017," Economic Statistics Series 135, Central Bank of Chile.
    11. Isaksen, Elisabeth T. & Narbel, Patrick A., 2017. "A carbon footprint proportional to expenditure - A case for Norway?," Ecological Economics, Elsevier, vol. 131(C), pages 152-165.
    12. Chen, Shaoqing & Long, Huihui & Chen, Bin & Feng, Kuishuang & Hubacek, Klaus, 2020. "Urban carbon footprints across scale: Important considerations for choosing system boundaries," Applied Energy, Elsevier, vol. 259(C).
    13. Kramers, Anna & Wangel, Josefin & Johansson, Stefan & Höjer, Mattias & Finnveden, Göran & Brandt, Nils, 2013. "Towards a comprehensive system of methodological considerations for cities' climate targets," Energy Policy, Elsevier, vol. 62(C), pages 1276-1287.
    14. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
    15. Makiko Tsukui & Shigemi Kagawa & Yasushi Kondo, 2015. "Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.
    16. Franco Solís, Alberto & F.T. Avelino, André & Carrascal-Incera, André, 2020. "The evolution of household-induced value chains and their environmental implications," Ecological Economics, Elsevier, vol. 174(C).
    17. Jing Tian & Hua Liao & Ce Wang, 2015. "Spatial–temporal variations of embodied carbon emission in global trade flows: 41 economies and 35 sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1125-1144, September.
    18. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    19. Chavez, Abel & Ramaswami, Anu, 2013. "Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance," Energy Policy, Elsevier, vol. 54(C), pages 376-384.
    20. Markaki, M. & Belegri-Roboli, A. & Sarafidis, Υ. & Mirasgedis, S., 2017. "The carbon footprint of Greek households (1995–2012)," Energy Policy, Elsevier, vol. 100(C), pages 206-215.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjomxx:v:12:y:2016:i:2:p:324-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjom20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.