IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v51y2012icp946-956.html
   My bibliography  Save this article

An application of dichotomous and polytomous Rasch models for scoring energy insecurity

Author

Listed:
  • Murray, Anthony G.
  • Mills, Bradford F.

Abstract

Household food security in the United States has been extensively researched and a number of indexes have been generated. However, household energy security has been largely ignored even though low-income households spend almost equal income shares on food and energy. This paper uses Rasch models and household responses to energy security questions in the 2005 Residential Energy Consumption Survey to generate an energy insecurity index that is consistent with those found in the food insecurity literature. The analysis yields several important findings for the generation of policy relevant household energy insecurity indexes. Questions that indicate reduction of basic expenditures, such as food, clothing, and shelter, are easiest for households to affirm implying low exposure to energy insecurity. Conversely, questions that concern households leaving the residence due to extreme temperatures consistently imply high exposure to energy insecurity. Households that score in the top decile of the energy insecurity index are more likely to be headed by single-females, be younger, and have a Black household head. Rasch models also identify flaws within survey. Particularly, the scope of the questions is quite broad and a refinement of the survey questions to focus on specific attributes of energy insecurity would likely improve future energy security indexes.

Suggested Citation

  • Murray, Anthony G. & Mills, Bradford F., 2012. "An application of dichotomous and polytomous Rasch models for scoring energy insecurity," Energy Policy, Elsevier, vol. 51(C), pages 946-956.
  • Handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:946-956
    DOI: 10.1016/j.enpol.2012.09.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151200852X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.09.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    2. Moffitt, Robert, 1983. "An Economic Model of Welfare Stigma," American Economic Review, American Economic Association, vol. 73(5), pages 1023-1035, December.
    3. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galeotti, Marzio & Rubashkina, Yana & Salini, Silvia & Verdolini, Elena, 2018. "Environmental policy performance and its determinants: Application of a three-level random intercept model," Energy Policy, Elsevier, vol. 114(C), pages 134-144.
    2. Boateng, Godfred O. & Balogun, Mobolanle R. & Dada, Festus O. & Armah, Frederick A., 2020. "Household energy insecurity: dimensions and consequences for women, infants and children in low- and middle-income countries," Social Science & Medicine, Elsevier, vol. 258(C).
    3. Anthony G. Murray & Bradford F. Mills, 2014. "The Impact Of Low-Income Home Energy Assistance Program Participation On Household Energy Insecurity," Contemporary Economic Policy, Western Economic Association International, vol. 32(4), pages 811-825, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Hsin-Li & Yang, Cheng-Hua, 2008. "Explore airlines’ brand niches through measuring passengers’ repurchase motivation—an application of Rasch measurement," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 105-112.
    2. Ivana Bassi & Matteo Carzedda & Enrico Gori & Luca Iseppi, 2022. "Rasch analysis of consumer attitudes towards the mountain product label," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-25, December.
    3. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    4. Curt Hagquist & Raili Välimaa & Nina Simonsen & Sakari Suominen, 2017. "Differential Item Functioning in Trend Analyses of Adolescent Mental Health – Illustrative Examples Using HBSC-Data from Finland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 673-691, September.
    5. Chang, Hsin-Li & Wu, Shun-Cheng, 2008. "Exploring the vehicle dependence behind mode choice: Evidence of motorcycle dependence in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 307-320, February.
    6. Jesper Tijmstra & Maria Bolsinova, 2019. "Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 846-869, September.
    7. Salzberger, Thomas & Koller, Monika, 2013. "Towards a new paradigm of measurement in marketing," Journal of Business Research, Elsevier, vol. 66(9), pages 1307-1317.
    8. Richard N McNeely & Salissou Moutari & Samuel Arba-Mosquera & Shwetabh Verma & Jonathan E Moore, 2018. "An alternative application of Rasch analysis to assess data from ophthalmic patient-reported outcome instruments," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-32, June.
    9. Francesca DE BATTISTI & Giovanna NICOLINI & Silvia SALINI, 2008. "Methodological overview of Rasch model and application in customer satisfaction survey data," Departmental Working Papers 2008-04, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    10. Kuan-Yu Jin & Yi-Jhen Wu & Hui-Fang Chen, 2022. "A New Multiprocess IRT Model With Ideal Points for Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 297-321, June.
    11. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    12. Piotr Tarka, 2013. "Model of latent profile factor analysis for ordered categorical data," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 171-182, March.
    13. Xiaohui Zheng & Sophia Rabe-Hesketh, 2007. "Estimating parameters of dichotomous and ordinal item response models with gllamm," Stata Journal, StataCorp LP, vol. 7(3), pages 313-333, September.
    14. Ghady El Khoury & Olivier Barbier & Xavier Libouton & Jean-Louis Thonnard & Philippe Lefèvre & Massimo Penta, 2020. "Manual ability in hand surgery patients: Validation of the ABILHAND scale in four diagnostic groups," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-17, December.
    15. David Andrich, 2010. "Sufficiency and Conditional Estimation of Person Parameters in the Polytomous Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 292-308, June.
    16. Glewwe, Paul & Huang, Qiuqiong & Park, Albert, 2017. "Cognitive skills, noncognitive skills, and school-to-work transitions in rural China," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 141-164.
    17. Stefano Noventa & Luca Stefanutti & Giulio Vidotto, 2014. "An Analysis of Item Response Theory and Rasch Models Based on the Most Probable Distribution Method," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 377-402, July.
    18. Yung-Hsiang Cheng, 2010. "Exploring passenger anxiety associated with train travel," Transportation, Springer, vol. 37(6), pages 875-896, November.
    19. Bartolucci, Francesco & Bacci, Silvia & Gnaldi, Michela, 2014. "MultiLCIRT: An R package for multidimensional latent class item response models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 971-985.
    20. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:946-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.