IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v44y2012icp23-33.html
   My bibliography  Save this article

Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis

Author

Listed:
  • Liu, Jin’e
  • Lin, Bin-Le
  • Sagisaka, Masayuki

Abstract

To promote the reduction of greenhouse gas emissions, research and development of bioethanol technologies are encouraged in Japan and a plan to utilize untilled fields to develop rice for bioethanol production as a substitute for petroleum fuel is being devised. This study applies emergy methods to compare the sustainability of petroleum fuel production and two Japanese rice-to-ethanol production scenarios: (a) ethanol from rice grain, while straw and chaff are burned as energy and (b) ethanol from rice+straw+chaff. The major emergy indices, Emergy Yield Ratio (EYR), Environmental Loading Ratio (ELR), Emergy Investment Ratio (EIR), Emergy Sustainability Index (ESI), Environmental Impacts Ratio (EVR) and system transformity (Tr), are analyzed to assess the production processes. The results show that (1) petroleum fuel production presents higher ELR, EIR, EVR and lower EYR, ESI, Tr than rice-to-ethanol production, indicating rice-to-ethanol production makes sense for reduction of greenhouse gases (GHG); (2) scenario (a) performs similarly on major indicators (EYR, ESI, ELR, EIR and EVR) to scenario (b), yet the system efficiency indicator (Tr) of scenario (a, 7.572×105semj/J) is much higher than (b, 4.573×105semj/J), and therefore (b) is a better alternative for policy decisions; (3) both petroleum fuel production and rice-to-ethanol processes are mainly driven by purchased resources and are unsustainable and nonrenewable in the long run.

Suggested Citation

  • Liu, Jin’e & Lin, Bin-Le & Sagisaka, Masayuki, 2012. "Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis," Energy Policy, Elsevier, vol. 44(C), pages 23-33.
  • Handle: RePEc:eee:enepol:v:44:y:2012:i:c:p:23-33
    DOI: 10.1016/j.enpol.2011.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511010275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    2. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    3. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    4. Niven, Robert K., 2005. "Ethanol in gasoline: environmental impacts and sustainability review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 535-555, December.
    5. Shapouri, Hosein & Duffield, James A. & Graboski, Michael S., 1995. "Estimating the Net Energy Balance of Corn Ethanol," Agricultural Economic Reports 34005, United States Department of Agriculture, Economic Research Service.
    6. Zhang, Gaijing & Long, Weiding, 2010. "A key review on emergy analysis and assessment of biomass resources for a sustainable future," Energy Policy, Elsevier, vol. 38(6), pages 2948-2955, June.
    7. Dong, Xiaobin & Ulgiati, Sergio & Yan, Maochao & Zhang, Xinshi & Gao, Wangsheng, 2008. "Energy and eMergy evaluation of bioethanol production from wheat in Henan Province, China," Energy Policy, Elsevier, vol. 36(10), pages 3882-3892, October.
    8. Bastianoni, S. & Campbell, D.E. & Ridolfi, R. & Pulselli, F.M., 2009. "The solar transformity of petroleum fuels," Ecological Modelling, Elsevier, vol. 220(1), pages 40-50.
    9. Bastianoni, S. & Facchini, A. & Susani, L. & Tiezzi, E., 2007. "Emergy as a function of exergy," Energy, Elsevier, vol. 32(7), pages 1158-1162.
    10. Ogden, Joan M. & Williams, Robert H. & Larson, Eric D., 2004. "Societal lifecycle costs of cars with alternative fuels/engines," Energy Policy, Elsevier, vol. 32(1), pages 7-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    2. Lu, Hong-fang & Lin, Bin-le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2016. "Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1060-1072.
    3. Agostinho, Feni & Bertaglia, Ana B.B. & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2015. "Influence of cellulase enzyme production on the energetic–environmental performance of lignocellulosic ethanol," Ecological Modelling, Elsevier, vol. 315(C), pages 46-56.
    4. Qiang Wang & Thomas Dogot & Xianlei Huang & Linna Fang & Changbin Yin, 2020. "Coupling of Rural Energy Structure and Straw Utilization: Based on Cases in Hebei, China," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    5. Lu, Hongfang & Lin, Bin-Le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2012. "Biofuel vs. biodiversity? Integrated emergy and economic cost-benefit evaluation of rice-ethanol production in Japan," Energy, Elsevier, vol. 46(1), pages 442-450.
    6. Yang, Q. & Chen, G.Q. & Liao, S. & Zhao, Y.H. & Peng, H.W. & Chen, H.P., 2013. "Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 229-239.
    7. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    2. Marvuglia, Antonino & Benetto, Enrico & Rios, Gordon & Rugani, Benedetto, 2013. "SCALE: Software for CALculating Emergy based on life cycle inventories," Ecological Modelling, Elsevier, vol. 248(C), pages 80-91.
    3. Seghetta, Michele & Østergård, Hanne & Bastianoni, Simone, 2014. "Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock," Ecological Modelling, Elsevier, vol. 288(C), pages 25-37.
    4. Musaab O. El-Faroug & Fuwu Yan & Maji Luo & Richard Fiifi Turkson, 2016. "Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline," Energies, MDPI, vol. 9(12), pages 1-24, November.
    5. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    6. Baral, Nawa Raj & Wituszynski, David M. & Martin, Jay F. & Shah, Ajay, 2016. "Sustainability assessment of cellulosic biorefinery stillage utilization methods using emergy analysis," Energy, Elsevier, vol. 109(C), pages 13-28.
    7. Zhang, Xiao Hong & Deng, ShiHuai & Jiang, WenJu & Zhang, YanZong & Peng, Hong & Li, Li & Yang, Gang & Li, YuanWei, 2010. "Emergy evaluation of the sustainability of two industrial systems based on wastes exchanges," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 182-195.
    8. Giannetti, B.F. & Almeida, C.M.V.B. & Bonilla, S.H., 2010. "Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur," Energy Policy, Elsevier, vol. 38(7), pages 3518-3526, July.
    9. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Ju, L.P. & Chen, B., 2011. "Embodied energy and emergy evaluation of a typical biodiesel production chain in China," Ecological Modelling, Elsevier, vol. 222(14), pages 2385-2392.
    11. Bastianoni, Simone & Morandi, Fabiana & Flaminio, Tommaso & Pulselli, Riccardo M. & Tiezzi, Elisa B.P., 2011. "Emergy and emergy algebra explained by means of ingenuous set theory," Ecological Modelling, Elsevier, vol. 222(16), pages 2903-2907.
    12. Colin J. Cockroft & Anthony D. Owen, 2007. "The Economics of Hydrogen Fuel Cell Buses," The Economic Record, The Economic Society of Australia, vol. 83(263), pages 359-370, December.
    13. Ricardo Enrique Vega-Azamar & Rabindranarth Romero-López & Mathias Glaus & Norma Angélica Oropeza-García & Robert Hausler, 2015. "Sustainability Assessment of the Residential Land Use in Seven Boroughs of the Island of Montreal, Canada," Sustainability, MDPI, vol. 7(3), pages 1-19, February.
    14. Mapemba, Lawrence D. & Epplin, Francis M. & Huhnke, Raymond L., 2006. "Environmental Consequences of Ethanol from Corn Grain, Ethanol from Lignocellulosic Biomass, and Conventional Gasoline," 2006 Annual meeting, July 23-26, Long Beach, CA 21034, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2011. "Is bioethanol a sustainable energy source? An energy-, exergy-, and emergy-based thermodynamic system analysis," Renewable Energy, Elsevier, vol. 36(12), pages 3479-3487.
    16. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.
    17. Grande, U. & Piernik, A. & Nienartowicz, A. & Buonocore, E. & Franzese, P.P., 2023. "Measuring natural capital value and ecological complexity of lake ecosystems," Ecological Modelling, Elsevier, vol. 482(C).
    18. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    19. Jiang, M.M. & Chen, B., 2011. "Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy," Ecological Modelling, Elsevier, vol. 222(13), pages 2149-2165.
    20. Sciubba, Enrico, 2010. "On the Second-Law inconsistency of Emergy Analysis," Energy, Elsevier, vol. 35(9), pages 3696-3706.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:44:y:2012:i:c:p:23-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.