IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v43y2012icp275-284.html
   My bibliography  Save this article

Integrated generation and transmission expansion planning including power and fuel transportation constraints

Author

Listed:
  • Sharan, Ishan
  • Balasubramanian, R.

Abstract

This paper presents a comprehensive optimal expansion planning model for an integrated generation and transmission system. The objective function used in the optimization model comprises of the capital cost of the new generating units to be built, the fuel cost incurred in running all the generating units in the system including the transportation cost of fuel from the fuel source ends to the generating unit locations and the capital cost of the new transmission lines to be installed for meeting the forecasted system demand at the target planning year. Constraints taken care of in the model include the fuel availability limits at the fuel sources, the fuel transportation limits for the transportation of fuels from fuel sources to the generating unit locations, capacity of generating units required to be built as well as the power transmission limits of the transmission lines in the system. The developed model is tested on a system to bring out the relative advantage of adopting the integrated generation and transmission expansion planning approach as compared to the sequential approach of first planning the generation expansion and then the transmission expansion. The model has also been applied to the integrated generation and transmission expansion planning of a real system.

Suggested Citation

  • Sharan, Ishan & Balasubramanian, R., 2012. "Integrated generation and transmission expansion planning including power and fuel transportation constraints," Energy Policy, Elsevier, vol. 43(C), pages 275-284.
  • Handle: RePEc:eee:enepol:v:43:y:2012:i:c:p:275-284
    DOI: 10.1016/j.enpol.2012.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512000079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana M. Quelhas & Esteban Gil & James D. McCalley, 2006. "Nodal prices in an integrated energy system," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 2(1), pages 50-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2013. "State-of-the-art of transmission expansion planning: Comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 312-319.
    2. Maria Dicorato & Gioacchino Tricarico & Giuseppe Forte & Francesca Marasciuolo, 2021. "Technical Indicators for the Comparison of Power Network Development in Scenario Evaluations," Energies, MDPI, vol. 14(14), pages 1-25, July.
    3. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    4. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    5. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2016. "An optimization framework for the integrated planning of generation and transmission expansion in interconnected power systems," Applied Energy, Elsevier, vol. 170(C), pages 1-21.
    6. Yoza, Akihiro & Yona, Atsushi & Senjyu, Tomonobu & Funabashi, Toshihisa, 2014. "Optimal capacity and expansion planning methodology of PV and battery in smart house," Renewable Energy, Elsevier, vol. 69(C), pages 25-33.
    7. Caunhye, Aakil M. & Cardin, Michel-Alexandre, 2018. "Towards more resilient integrated power grid capacity expansion: A robust optimization approach with operational flexibility," Energy Economics, Elsevier, vol. 72(C), pages 20-34.
    8. Quiroga, Daniela & Sauma, Enzo & Pozo, David, 2019. "Power system expansion planning under global and local emission mitigation policies," Applied Energy, Elsevier, vol. 239(C), pages 1250-1264.
    9. Seddighi, Amir Hossein & Ahmadi-Javid, Amir, 2015. "Integrated multiperiod power generation and transmission expansion planning with sustainability aspects in a stochastic environment," Energy, Elsevier, vol. 86(C), pages 9-18.
    10. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    11. Xian Huang & Kun Liu, 2023. "Impact of Electricity Price Expectation in the Planning Period on the Evolution of Generation Expansion Planning in the Market Environment," Energies, MDPI, vol. 16(8), pages 1-21, April.
    12. Trotter, Philipp A. & Cooper, Nathanial J. & Wilson, Peter R., 2019. "A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification – The case of Uganda," Applied Energy, Elsevier, vol. 243(C), pages 288-312.
    13. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    14. Verástegui, Felipe & Lorca, Álvaro & Olivares, Daniel & Negrete-Pincetic, Matias, 2021. "Optimization-based analysis of decarbonization pathways and flexibility requirements in highly renewable power systems," Energy, Elsevier, vol. 234(C).
    15. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    16. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Kopanos, Georgios M. & Pistikopoulos, Efstratios N. & Georgiadis, Michael C., 2014. "A spatial multi-period long-term energy planning model: A case study of the Greek power system," Applied Energy, Elsevier, vol. 115(C), pages 456-482.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Abrell & Hannes Weigt, 2016. "Investments in a Combined Energy Network Model: Substitution between Natural Gas and Electricity?," The Energy Journal, , vol. 37(4), pages 63-86, October.
    2. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    3. Bao, Shiyuan & Yang, Zhifang & Yu, Juan, 2021. "Decomposition and analysis of marginal prices in multi-energy systems," Energy, Elsevier, vol. 221(C).
    4. Manfredi Crainz & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Francesco Montana & Rossano Musca & Eleonora Riva Sanseverino & Enrico Telaretti, 2019. "Flexibility Services to Minimize the Electricity Production from Fossil Fuels. A Case Study in a Mediterranean Small Island," Energies, MDPI, vol. 12(18), pages 1-38, September.
    5. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2017. "Optimal operation and marginal costs in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 135(C), pages 788-798.
    6. Bakken, Bjorn H. & Skjelbred, Hans I. & Wolfgang, Ove, 2007. "eTransport: Investment planning in energy supply systems with multiple energy carriers," Energy, Elsevier, vol. 32(9), pages 1676-1689.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:43:y:2012:i:c:p:275-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.