Locally manufactured wind power technology for sustainable rural electrification
Author
Abstract
Suggested Citation
DOI: 10.1016/j.enpol.2011.12.053
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lew, Debra J., 2000. "Alternatives to coal and candles: wind power in China," Energy Policy, Elsevier, vol. 28(4), pages 271-286, April.
- Laia Ferrer-Martí & Rafael Pastor & G. Capó & Enrique Velo, 2011. "Optimizing microwind rural electrification projects. A case study in Peru," Journal of Global Optimization, Springer, vol. 50(1), pages 127-143, May.
- Mishnaevsky, Leon & Freere, Peter & Sinha, Rakesh & Acharya, Parash & Shrestha, Rakesh & Manandhar, Pushkar, 2011. "Small wind turbines with timber blades for developing countries: Materials choice, development, installation and experiences," Renewable Energy, Elsevier, vol. 36(8), pages 2128-2138.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- B. Domenech & L. Ferrer-Martí & R. Pastor, 2022. "Multicriteria analysis of renewable-based electrification projects in developing countries," Annals of Operations Research, Springer, vol. 312(2), pages 1375-1401, May.
- Juanpera, M. & Ferrer-Martí, L. & Pastor, R., 2022. "Multi-stage optimization of rural electrification planning at regional level considering multiple criteria. Case study in Nigeria," Applied Energy, Elsevier, vol. 314(C).
- Choudhury, Shibabrata & Parida, Adikanda & Pant, Rajive Mohan & Chatterjee, Saibal, 2019. "GIS augmented computational intelligence technique for rural cluster electrification through prioritized site selection of micro-hydro power generation system," Renewable Energy, Elsevier, vol. 142(C), pages 487-496.
- Juanpera, M. & Blechinger, P. & Ferrer-Martí, L. & Hoffmann, M.M. & Pastor, R., 2020. "Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Ranaboldo, Matteo & García-Villoria, Alberto & Ferrer-Martí, Laia & Pastor Moreno, Rafael, 2014. "A heuristic method to design autonomous village electrification projects with renewable energies," Energy, Elsevier, vol. 73(C), pages 96-109.
- Mainali, Brijesh & Silveira, Semida, 2013. "Alternative pathways for providing access to electricity in developing countries," Renewable Energy, Elsevier, vol. 57(C), pages 299-310.
- Huesca-Pérez, María Elena & Sheinbaum-Pardo, Claudia & Köppel, Johann, 2016. "Social implications of siting wind energy in a disadvantaged region – The case of the Isthmus of Tehuantepec, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 952-965.
- Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
- Kamp, Linda M. & Vanheule, Lynn F.I., 2015. "Review of the small wind turbine sector in Kenya: Status and bottlenecks for growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 470-480.
- Ranaboldo, Matteo & Lega, Bruno Domenech & Ferrenbach, David Vilar & Ferrer-Martí, Laia & Moreno, Rafael Pastor & García-Villoria, Alberto, 2014. "Renewable energy projects to electrify rural communities in Cape Verde," Applied Energy, Elsevier, vol. 118(C), pages 280-291.
- Bonnín Roca, Jaime & Vaishnav, Parth & Morgan, Granger M. & Fuchs, Erica & Mendonça, Joana, 2021. "Technology Forgiveness: Why emerging technologies differ in their resilience to institutional instability," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Katerina Troullaki & Stelios Rozakis & Kostas Latoufis & Chris Giotitsas & Christina Priavolou & Fausto Freire, 2022. "Sustainable Rural Electrification: Harnessing a Cosmolocal Wind," Energies, MDPI, vol. 15(13), pages 1-16, June.
- Rahman, Mahmudur & Ong, Zhi Chao & Chong, Wen Tong & Julai, Sabariah & Khoo, Shin Yee, 2015. "Performance enhancement of wind turbine systems with vibration control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 43-54.
- Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
- Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
- Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
- Ferrer-Martí, Laia & Garwood, Anna & Chiroque, José & Ramirez, Benito & Marcelo, Oliver & Garfí, Marianna & Velo, Enrique, 2012. "Evaluating and comparing three community small-scale wind electrification projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5379-5390.
- Reinauer, Tobias & Hansen, Ulrich Elmer, 2021. "Determinants of adoption in open-source hardware: A review of small wind turbines," Technovation, Elsevier, vol. 106(C).
- Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2013. "Greener energy: Issues and challenges for Pakistan—wind power prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 519-538.
- Gómez-Hernández, D.F. & Domenech, B. & Moreira, J. & Farrera, N. & López-González, A. & Ferrer-Martí, L., 2019. "Comparative evaluation of rural electrification project plans: A case study in Mexico," Energy Policy, Elsevier, vol. 129(C), pages 23-33.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ferrer-Martí, L. & Domenech, B. & García-Villoria, A. & Pastor, R., 2013. "A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries," European Journal of Operational Research, Elsevier, vol. 226(2), pages 293-300.
- López-González, A. & Domenech, B. & Gómez-Hernández, D. & Ferrer-Martí, L., 2017. "Renewable microgrid projects for autonomous small-scale electrification in Andean countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1255-1265.
- Ferrer-Martí, Laia & Garwood, Anna & Chiroque, José & Ramirez, Benito & Marcelo, Oliver & Garfí, Marianna & Velo, Enrique, 2012. "Evaluating and comparing three community small-scale wind electrification projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5379-5390.
- Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
- Wolde-Ghiorgis, W., 2002. "Renewable energy for rural development in Ethiopia: the case for new energy policies and institutional reform," Energy Policy, Elsevier, vol. 30(11-12), pages 1095-1105, September.
- Lema, Adrian & Ruby, Kristian, 2007. "Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy," Energy Policy, Elsevier, vol. 35(7), pages 3879-3890, July.
- Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
- Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
- Laia Ferrer-Martí & Rafael Pastor & G. Capó & Enrique Velo, 2011. "Optimizing microwind rural electrification projects. A case study in Peru," Journal of Global Optimization, Springer, vol. 50(1), pages 127-143, May.
- Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
- Leary, J. & Czyrnek-Delêtre, M. & Alsop, A. & Eales, A. & Marandin, L. & Org, M. & Craig, M. & Ortiz, W. & Casillas, C. & Persson, J. & Dienst, C. & Brown, E. & While, A. & Cloke, J. & Latoufis, K., 2020. "Finding the niche: A review of market assessment methodologies for rural electrification with small scale wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Clement Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Seck & Marine Simoën, 2019. "Vers une Géopolitique de l'énergie plus complexe ? Une analyse prospective tridimensionnelle de la transition énergétique," Working Papers hal-02971706, HAL.
- Lewis, Joanna I. & Wiser, Ryan H., 2007. "Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms," Energy Policy, Elsevier, vol. 35(3), pages 1844-1857, March.
- Reinauer, Tobias & Hansen, Ulrich Elmer, 2021. "Determinants of adoption in open-source hardware: A review of small wind turbines," Technovation, Elsevier, vol. 106(C).
- Lam, J.C.K. & Woo, C.K. & Kahrl, F. & Yu, W.K., 2013. "What moves wind energy development in China? Show me the money!," Applied Energy, Elsevier, vol. 105(C), pages 423-429.
- Liu, Wen-Qiang & Gan, Lin & Zhang, Xi-Liang, 2002. "Cost-competitive incentives for wind energy development in China: institutional dynamics and policy changes," Energy Policy, Elsevier, vol. 30(9), pages 753-765, July.
- Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
- Ling, Yu & Cai, Xu, 2012. "Exploitation and utilization of the wind power and its perspective in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2111-2117.
- Galleguillos-Pozo, R. & Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2021. "Design of stand-alone electrification systems using fuzzy mathematical programming approaches," Energy, Elsevier, vol. 228(C).
- Nahm, Jonas, 2023. "Trailing the Market or Governing It? Two Decades of Industrial Policy for China's Solar Sector," Institute on Global Conflict and Cooperation, Working Paper Series qt0f34s7b6, Institute on Global Conflict and Cooperation, University of California.
More about this item
Keywords
Local manufacture; Wind; Rural electrification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:43:y:2012:i:c:p:173-183. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.