IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v42y2012icp538-550.html
   My bibliography  Save this article

A Response Surface-Based Cost Model for Wind Farm Design

Author

Listed:
  • Zhang, Jie
  • Chowdhury, Souma
  • Messac, Achille
  • Castillo, Luciano

Abstract

A Response Surface-Based Wind Farm Cost (RS-WFC) model is developed for the engineering planning of wind farms. The RS-WFC model is developed using Extended Radial Basis Functions (E-RBF) for onshore wind farms in the U.S. This model is then used to explore the influences of different design and economic parameters, including number of turbines, rotor diameter and labor cost, on the cost of a wind farm. The RS-WFC model is composed of three components that estimate the effects of engineering and economic factors on (i) the installation cost, (ii) the annual Operation and Maintenance (O&M) cost, and (iii) the total annual cost of a wind farm. The accuracy of the cost model is favorably established through comparison with pertinent commercial data. The final RS-WFC model provided interesting insights into cost variation with respect to critical engineering and economic parameters. In addition, a newly developed analytical wind farm engineering model is used to determine the power generated by the farm, and the subsequent Cost of Energy (COE). This COE is optimized for a unidirectional uniform “incoming wind speed” scenario using Particle Swarm Optimization (PSO). We found that the COE could be appreciably minimized through layout optimization, thereby yielding significant cost savings.

Suggested Citation

  • Zhang, Jie & Chowdhury, Souma & Messac, Achille & Castillo, Luciano, 2012. "A Response Surface-Based Cost Model for Wind Farm Design," Energy Policy, Elsevier, vol. 42(C), pages 538-550.
  • Handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:538-550
    DOI: 10.1016/j.enpol.2011.12.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511010263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.12.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    2. Snyder, Brian & Kaiser, Mark J., 2009. "Offshore wind power in the US: Regulatory issues and models for regulation," Energy Policy, Elsevier, vol. 37(11), pages 4442-4453, November.
    3. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2012. "Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation," Renewable Energy, Elsevier, vol. 38(1), pages 16-30.
    4. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    5. Berry, David, 2009. "Innovation and the price of wind energy in the US," Energy Policy, Elsevier, vol. 37(11), pages 4493-4499, November.
    6. Hussain, Mohammed F. & Barton, Russel R. & Joshi, Sanjay B., 2002. "Metamodeling: Radial basis functions, versus polynomials," European Journal of Operational Research, Elsevier, vol. 138(1), pages 142-154, April.
    7. Kiranoudis, C. T. & Voros, N. G. & Maroulis, Z. B., 2001. "Short-cut design of wind farms," Energy Policy, Elsevier, vol. 29(7), pages 567-578, June.
    8. Kaldellis, J. K. & Gavras, Th. J., 2000. "The economic viability of commercial wind plants in Greece A complete sensitivity analysis," Energy Policy, Elsevier, vol. 28(8), pages 509-517, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Newman, A. Jensen & Drew, Donald A. & Castillo, Luciano, 2014. "Pseudo spectral analysis of the energy entrainment in a scaled down wind farm," Renewable Energy, Elsevier, vol. 70(C), pages 129-141.
    2. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2013. "Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions," Renewable Energy, Elsevier, vol. 52(C), pages 273-282.
    3. Newman, A. Jensen & Cal, Raúl Bayoán & Castillo, Luciano, 2015. "Blade number effects in a scaled down wind farm," Renewable Energy, Elsevier, vol. 81(C), pages 472-481.
    4. Suyan Zhao & Xiaopai Su & Jiahui Li & Guibin Suo & Xiaoxuan Meng, 2023. "Research on Wind Power Project Risk Management Based on Structural Equation and Catastrophe Theory," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    5. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    6. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    7. Geyer, Philipp & Schlüter, Arno, 2014. "Automated metamodel generation for Design Space Exploration and decision-making – A novel method supporting performance-oriented building design and retrofitting," Applied Energy, Elsevier, vol. 119(C), pages 537-556.
    8. Geyer, Philipp & Singaravel, Sundaravelpandian, 2018. "Component-based machine learning for performance prediction in building design," Applied Energy, Elsevier, vol. 228(C), pages 1439-1453.
    9. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    10. Tautz-Weinert, Jannis & Yürüşen, Nurseda Y. & Melero, Julio J. & Watson, Simon J., 2019. "Sensitivity study of a wind farm maintenance decision - A performance and revenue analysis," Renewable Energy, Elsevier, vol. 132(C), pages 93-105.
    11. González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2016. "Optimisation of hydrokinetic turbine array layouts via surrogate modelling," Renewable Energy, Elsevier, vol. 93(C), pages 45-57.
    12. Ma, Xiaojuan & Wu, Xinghong & Wu, Yan & Wang, Yufei, 2023. "Energy system design of offshore natural gas hydrates mining platforms considering multi-period floating wind farm optimization and production profile fluctuation," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muche, Thomas & Pohl, Ralf & Höge, Christin, 2016. "Economically optimal configuration of onshore horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 469-480.
    2. Linnell, Peter, 2010. "Are Smaller Turbines the Way Forward for Wind Energy in Herefordshire?," MPRA Paper 58879, University Library of Munich, Germany.
    3. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    4. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    5. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2013. "Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions," Renewable Energy, Elsevier, vol. 52(C), pages 273-282.
    6. Marc Baudry & Clément Bonnet, 2016. "Demand pull isntruments and the development of wind power in Europe: A counter-factual analysis," Working Papers 1607, Chaire Economie du climat.
    7. Gernaat, David E.H.J. & Van Vuuren, Detlef P. & Van Vliet, Jasper & Sullivan, Patrick & Arent, Douglas J., 2014. "Global long-term cost dynamics of offshore wind electricity generation," Energy, Elsevier, vol. 76(C), pages 663-672.
    8. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    9. Marc Baudry & Clément Bonnet, 2019. "Demand-Pull Instruments and the Development of Wind Power in Europe: A Counterfactual Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 385-429, June.
    10. Kaldellis, J.K. & Kapsali, M., 2013. "Shifting towards offshore wind energy—Recent activity and future development," Energy Policy, Elsevier, vol. 53(C), pages 136-148.
    11. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2012. "Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation," Renewable Energy, Elsevier, vol. 38(1), pages 16-30.
    12. Linnell, Peter, 2010. "Are Smaller Turbines the Way Forward for Wind Energy in Herefordshire?," MPRA Paper 58227, University Library of Munich, Germany.
    13. Gass, V. & Strauss, F. & Schmidt, J. & Schmid, E., 2011. "Assessing the effect of wind power uncertainty on profitability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2677-2683, August.
    14. Fatih Karpat, 2013. "A Virtual Tool for Minimum Cost Design of a Wind Turbine Tower with Ring Stiffeners," Energies, MDPI, vol. 6(8), pages 1-19, July.
    15. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    17. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    18. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    19. Bolinger, Mark & Wiser, Ryan, 2012. "Understanding wind turbine price trends in the U.S. over the past decade," Energy Policy, Elsevier, vol. 42(C), pages 628-641.
    20. Gass, Viktoria & Schmidt, Johannes & Strauss, Franziska & Schmid, Erwin, 2013. "Assessing the economic wind power potential in Austria," Energy Policy, Elsevier, vol. 53(C), pages 323-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:538-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.