IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i1p228-233.html
   My bibliography  Save this article

Indirect fuel use change (IFUC) and the lifecycle environmental impact of biofuel policies

Author

Listed:
  • Rajagopal, D.
  • Hochman, G.
  • Zilberman, D.

Abstract

A common assumption in lifecycle assessment (LCA) based estimates of greenhouse gas (GHG) benefits (or costs) of renewable fuel such as biofuel is that it simply replaces an energy-equivalent amount of fossil fuel and that total fuel consumption remains unchanged. However, the adoption of renewable fuels will affect the price of fuel and therefore affect total fuel consumption which, may increase or decrease depending on the policy regime and market conditions. Using a representative two-region model of the global oil market in which, one region implements a domestic biofuel mandate and the other does not, we show that the net change in global fuel consumption due to the policy, which we term indirect fuel use change (IFUC), can have a significant impact on the net GHG emissions associated with biofuel. If LCA-based regulations are designed to account for indirect emissions such as indirect land use change, then we argue that IFUC emissions cannot be ignored. Our work also shows how different policies can affect the environmental impact from adopting a given clean technology differently.

Suggested Citation

  • Rajagopal, D. & Hochman, G. & Zilberman, D., 2011. "Indirect fuel use change (IFUC) and the lifecycle environmental impact of biofuel policies," Energy Policy, Elsevier, vol. 39(1), pages 228-233, January.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:228-233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00721-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delucchi, Mark, 2005. "Incorporating The Effect Of Price Changes On Co2- Equivalent Emssions From Alternative-Fuel Lifecycles: Scoping The Issues," Institute of Transportation Studies, Working Paper Series qt92x2d026, Institute of Transportation Studies, UC Davis.
    2. Krichene, Noureddine, 2002. "World crude oil and natural gas: a demand and supply model," Energy Economics, Elsevier, vol. 24(6), pages 557-576, November.
    3. Daniel J. Graham & Stephen Glaister, 2002. "The Demand for Automobile Fuel: A Survey of Elasticities," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 1-25, January.
    4. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    5. Delucchi, Mark, 2005. "Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues," Institute of Transportation Studies, Working Paper Series qt606506g7, Institute of Transportation Studies, UC Davis.
    6. Carolyn Fischer, 2010. "Renewable Portfolio Standards: When Do They Lower Energy Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 101-120.
    7. Rajagapol, Deepak & Sexton, Steven & Hochman, Gal & Roland-Holst, David & Zilberman, David D, 2009. "Model estimates food-versus-biofuel trade-off," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt41k1w82x, Department of Agricultural & Resource Economics, UC Berkeley.
    8. Hertel, Thomas & Golub, Alla & Jones, Andrew & O'Hare, Michael & Plevin, Richard & Kammen, Daniel, 2009. "Global Land Use and Greenhouse Gas Emissions Impacts of U.S. Maize Ethanol: The Role of Market-Mediated Responses," GTAP Working Papers 3160, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    9. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    10. John C.B. Cooper, 2003. "Price elasticity of demand for crude oil: estimates for 23 countries," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 27(1), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Creutzig, Felix & McGlynn, Emily & Minx, Jan & Edenhofer, Ottmar, 2011. "Climate policies for road transport revisited (I): Evaluation of the current framework," Energy Policy, Elsevier, vol. 39(5), pages 2396-2406, May.
    2. Jaeger, William K. & Egelkraut, Thorsten M., 2011. "Biofuel economics in a setting of multiple objectives and unintended consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4320-4333.
    3. Anderson, Soren T., 2012. "The demand for ethanol as a gasoline substitute," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 151-168.
    4. Prest, Brian C. & Fell, Harrison & Gordon, Deborah & Conway, TJ, 2024. "Estimating the emissions reductions from supply-side fossil fuel interventions," Energy Economics, Elsevier, vol. 136(C).
    5. Thompson, Wyatt & Whistance, Jarrett & Meyer, Seth, 2011. "Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions," Energy Policy, Elsevier, vol. 39(9), pages 5509-5518, September.
    6. Böhringer, Christoph & Garcia-Muros, Xaquin & Gonzalez-Eguino, Mikel & Rey, Luis, 2017. "US climate policy: A critical assessment of intensity standards," Energy Economics, Elsevier, vol. 68(S1), pages 125-135.
    7. Haugom, Erik & Mydland, Ørjan & Pichler, Alois, 2016. "Long term oil prices," Energy Economics, Elsevier, vol. 58(C), pages 84-94.
    8. Jean-Pierre Amigues & Ujjayant Chakravorty & Gilles Lafforgue & Michel Moreaux, 2022. "Comparing Volume and Blend Renewable Energy Mandates under a Carbon Budget," Annals of Economics and Statistics, GENES, issue 147, pages 51-78.
    9. Rowland, Christopher S. & Mjelde, James W. & Dharmasena, Senarath, 2017. "Policy implications of considering pre-commitments in U.S. aggregate energy demand system," Energy Policy, Elsevier, vol. 102(C), pages 406-413.
    10. Christoph Böhringer & Florian Landis & Miguel Angel Tovar Reaños, 2017. "Economic Impacts of Renewable Energy Promotion in Germany," The Energy Journal, , vol. 38(1_suppl), pages 189-210, June.
    11. Don Fullerton & Chi L. Ta, 2022. "What Determines Effectiveness of Renewable Energy Standards? General Equilibrium Analytical Model and Empirical Analysis," CESifo Working Paper Series 9565, CESifo.
    12. Dandres, Thomas & Gaudreault, Caroline & Seco, Pablo Tirado & Samson, Réjean, 2014. "Uncertainty management in a macro life cycle assessment of a 2005–2025 European bioenergy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 52-61.
    13. repec:spo:wpmain:info:hdl:2441/53r60a8s3kup1vc9je5h30d2n is not listed on IDEAS
    14. Fischer, Justina A.V., 2012. "The choice of domestic policies in a globalized economy: Extended Version," MPRA Paper 37816, University Library of Munich, Germany.
    15. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    16. Genc, Talat S., 2016. "Measuring demand responses to wholesale electricity prices using market power indices," Energy Economics, Elsevier, vol. 56(C), pages 247-260.
    17. Yousaf Raza, Muhammad & Lin, Boqiang, 2021. "Oil for Pakistan: What are the main factors affecting the oil import?," Energy, Elsevier, vol. 237(C).
    18. Böhringer, Christoph & Garcia-Muros, Xaquin & Cazcarro, Ignacio & Arto, Iñaki, 2017. "The efficiency cost of protective measures in climate policy," Energy Policy, Elsevier, vol. 104(C), pages 446-454.
    19. Bharati, Rakesh & Crain, Susan J. & Kaminski, Vincent, 2012. "Clustering in crude oil prices and the target pricing zone hypothesis," Energy Economics, Elsevier, vol. 34(4), pages 1115-1123.
    20. Golombek, Rolf & Irarrazabal, Alfonso A. & Ma, Lin, 2018. "OPEC's market power: An empirical dominant firm model for the oil market," Energy Economics, Elsevier, vol. 70(C), pages 98-115.
    21. Gregory F. Nemet and Adam R. Brandt, 2012. "Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and Direct CO2 Air Capture," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).

    More about this item

    Keywords

    Biofuels Lifecycle Emissions;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:228-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.