IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i7p3755-3762.html
   My bibliography  Save this article

Why is China going nuclear?

Author

Listed:
  • Zhou, Yun

Abstract

In November 2007, China's State Council approved its "Medium- and Long-Term Nuclear Power Development Plan", which set as a goal to increase the nation's nuclear capacity from about 7 to 40Â GWe by 2020. In March 2008, the National Development and Reform Commission suggested installed nuclear power capacity might even exceed 60Â GWe by 2020 due to faster than expected construction. Even with this growth, nuclear power's share of China's installed total capacity would be only about 5 percent. Yet China's rapid nuclear expansion poses serious financial, political, security, and environmental challenges. This study investigates China's claim that nuclear energy is necessary to meet its growing energy demands by analyzing China's energy alternatives and assessing their likelihood of contributing to total Chinese capacity. By looking at China's transformative energy policy from several perspectives, this study finds that nuclear energy is indeed a necessity for China.

Suggested Citation

  • Zhou, Yun, 2010. "Why is China going nuclear?," Energy Policy, Elsevier, vol. 38(7), pages 3755-3762, July.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:7:p:3755-3762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00157-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Fred Bergsten & Bates Gill & Nicholas R. Lardy, 2006. "China: The Balance Sheet What the World Needs to Know Now about the Emerging Superpower," Peterson Institute Press: All Books, Peterson Institute for International Economics, number pa04648.
    2. Zhao, Lifeng & Gallagher, Kelly Sims, 2007. "Research, development, demonstration, and early deployment policies for advanced-coal technology in China," Energy Policy, Elsevier, vol. 35(12), pages 6467-6477, December.
    3. Auffhammer, Maximilian & Carson, Richard T., 2008. "Forecasting the path of China's CO2 emissions using province-level information," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anadón, Laura Díaz, 2012. "Missions-oriented RD&D institutions in energy between 2000 and 2010: A comparative analysis of China, the United Kingdom, and the United States," Research Policy, Elsevier, vol. 41(10), pages 1742-1756.
    2. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
    3. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    4. Yu, Sha & Yarlagadda, Brinda & Siegel, Jonas Elliott & Zhou, Sheng & Kim, Sonny, 2020. "The role of nuclear in China's energy future: Insights from integrated assessment," Energy Policy, Elsevier, vol. 139(C).
    5. Lam, J. & Cheung, L. & Han, Y. & Wang, S., 2018. "China’s Response to Nuclear Safety Post-Fukushima: Genuine or Rhetoric?," Cambridge Working Papers in Economics 1866, Faculty of Economics, University of Cambridge.
    6. Chi, Cheryl S.F. & Chen, Ling, 2012. "The sources of divergent practices in China's nuclear power sector," Energy Policy, Elsevier, vol. 48(C), pages 348-357.
    7. Rong, Fang & Victor, David G., 2011. "Coal liquefaction policy in China: Explaining the policy reversal since 2006," Energy Policy, Elsevier, vol. 39(12), pages 8175-8184.
    8. Brook, Barry W., 2012. "Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case," Energy Policy, Elsevier, vol. 42(C), pages 4-8.
    9. Tang, Ling & Yu, Lean & He, Kaijian, 2014. "A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 128(C), pages 1-14.
    10. Guoyang Wu & Ping Ju & Xinli Song & Chenglong Xie & Wuzhi Zhong, 2016. "Interaction and Coordination among Nuclear Power Plants, Power Grids and Their Protection Systems," Energies, MDPI, vol. 9(4), pages 1-24, April.
    11. Laura Rodríguez-Penalonga & B. Yolanda Moratilla Soria, 2017. "A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies," Energies, MDPI, vol. 10(8), pages 1-16, August.
    12. Valentine, Scott Victor, 2014. "The socio-political economy of electricity generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 416-429.
    13. Wang, Qiang & Li, Rongrong & He, Gang, 2018. "Research status of nuclear power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 90-96.
    14. Guo, Xiaopeng & Guo, Xiaodan, 2016. "Nuclear power development in China after the restart of new nuclear construction and approval: A system dynamics analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 999-1007.
    15. B. Yolanda Moratilla Soria & Rosario Ruiz-Sánchez & Mathilde Estadieu & Borja Belda-Sánchez & Cristina Cordón-Peralta & Paula Martín-Cañas & Laura Rodriguez-Penalonga & M. Del Mar Cledera-Castro & M. , 2015. "Impact of the Taxes on Used Nuclear Fuel on the Fuel Cycle Economics in Spain," Energies, MDPI, vol. 8(2), pages 1-14, February.
    16. Roh, Seungkook & Choi, Jae Young & Chang, Soon Heung, 2019. "Modeling of nuclear power plant export competitiveness and its implications: The case of Korea," Energy, Elsevier, vol. 166(C), pages 157-169.
    17. Tang, Ling & Yu, Lean & Wang, Shuai & Li, Jianping & Wang, Shouyang, 2012. "A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 93(C), pages 432-443.
    18. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    19. Wang, Run & Liu, Wenjuan & Xiao, Lishan & Liu, Jian & Kao, William, 2011. "Path towards achieving of China's 2020 carbon emission reduction target--A discussion of low-carbon energy policies at province level," Energy Policy, Elsevier, vol. 39(5), pages 2740-2747, May.
    20. Ling Tang & Shuai Wang & Kaijian He & Shouyang Wang, 2015. "A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting," Annals of Operations Research, Springer, vol. 234(1), pages 111-132, November.
    21. Lam, Jacqueline C.K. & Cheung, Lawrence Y.L. & Han, Yang & Wang, Shanshan, 2022. "China's response to nuclear safety pre- and post-Fukushima: An interdisciplinary analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    2. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    3. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    4. Jayanthakumaran, Kankesu & Verma, Reetu & Liu, Ying, 2012. "CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India," Energy Policy, Elsevier, vol. 42(C), pages 450-460.
    5. QIN, Bo & WU, Jianfeng, 2015. "Does urban concentration mitigate CO2 emissions? Evidence from China 1998–2008," China Economic Review, Elsevier, vol. 35(C), pages 220-231.
    6. Newbold, Stephen C. & Johnston, Robert J., 2020. "Valuing non-market valuation studies using meta-analysis: A demonstration using estimates of willingness-to-pay for water quality improvements," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    7. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    8. He, Jie & Richard, Patrick, 2010. "Environmental Kuznets curve for CO2 in Canada," Ecological Economics, Elsevier, vol. 69(5), pages 1083-1093, March.
    9. Luo, Xiaohu & Caron, Justin & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "Interprovincial migration and the stringency of energy policy in China," Energy Economics, Elsevier, vol. 58(C), pages 164-173.
    10. Michael Cary, 2020. "Have greenhouse gas emissions from US energy production peaked? State level evidence from six subsectors," Environment Systems and Decisions, Springer, vol. 40(1), pages 125-134, March.
    11. Sargent, John & Matthews, Linda, 2009. "China versus Mexico in the Global EPZ Industry: Maquiladoras, FDI Quality, and Plant Mortality," World Development, Elsevier, vol. 37(6), pages 1069-1082, June.
    12. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    13. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.
    14. Klemperer, Paul, 2009. "What is the Top Priority on Climate Change?," CEPR Discussion Papers 7141, C.E.P.R. Discussion Papers.
    15. Jianglong Li & Boqiang Lin, 2016. "Green Economy Performance and Green Productivity Growth in China’s Cities: Measures and Policy Implication," Sustainability, MDPI, vol. 8(9), pages 1-21, September.
    16. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    17. Atwi, Majed & Barberán, Ramón & Mur, Jesús & Angulo, Ana, 2018. "CO2 Kuznets Curve Revisited: From Cross-Sections to Panel Data Models," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 40, pages 169-196.
    18. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    19. Sun, Qi & Xu, Lin & Yin, Hua, 2016. "Energy pricing reform and energy efficiency in China: Evidence from the automobile market," Resource and Energy Economics, Elsevier, vol. 44(C), pages 39-51.
    20. Matthieu Bussière & Arnaud Mehl, 2008. "China's and India's roles in global trade and finance - twin titans for the new millennium?," Occasional Paper Series 80, European Central Bank.

    More about this item

    Keywords

    China Nuclear power Coal;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:7:p:3755-3762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.