IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i4p1811-1818.html
   My bibliography  Save this article

Benefits of natural gas introduction in the energy matrix of isolated electrical system in the city of Manaus - state of Amazonas - Brazil

Author

Listed:
  • Frota, Willamy M.
  • Rocha, Brígida R.P.

Abstract

The need to find cleaner, safer and less expensive sources of fuel in the city of Manaus, capital of the state of Amazonas (AM) in Brazil is inevitable due, among other factors, to the historical situation of the petroleum-derived fuel's large-scale use for power generation in the city by Brazil's energy planning. In this context, the use of natural gas in the province of Urucu, in the city of Coari countryside of the state of Amazons, is the best short-term solution, which will enable the substitution of petroleum-derived liquid fuels for the natural gas in the thermoelectric power plants in the city of Manaus and in seven other cities in the state, which are favored by the Coari-Manaus pipeline's main trajectory. This article presents the economic and environmental benefits with gas natural introduction in the energy matrix of isolated electrical system in Manaus. This project will be a great conquest for the city of Manaus, as a result of the Brazilian Energy Sector 20-year-planning, which will be completed in 2010, and will permit the beginning of a new growth-and-development cycle for the state of Amazonas and the Amazon itself.

Suggested Citation

  • Frota, Willamy M. & Rocha, Brígida R.P., 2010. "Benefits of natural gas introduction in the energy matrix of isolated electrical system in the city of Manaus - state of Amazonas - Brazil," Energy Policy, Elsevier, vol. 38(4), pages 1811-1818, April.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:4:p:1811-1818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00906-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gorini de Oliveira, Ricardo & de Moraes Marreco, Juliana, 2006. "Natural gas power generation in Brazil: New window of opportunity?," Energy Policy, Elsevier, vol. 34(15), pages 2361-2372, October.
    2. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    3. Malla, Sunil, 2009. "CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: A decomposition analysis," Energy Policy, Elsevier, vol. 37(1), pages 1-9, January.
    4. Goldemberg, Jose, 2006. "The promise of clean energy," Energy Policy, Elsevier, vol. 34(15), pages 2185-2190, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neto, João C. do L. & da Costa Junior, Carlos T. & Bitar, Sandro D.B. & Junior, Walter B., 2011. "Forecasting of energy and diesel consumption and the cost of energy production in isolated electrical systems in the Amazon using a fuzzification process in time series models," Energy Policy, Elsevier, vol. 39(9), pages 4947-4955, September.
    2. Gabriela Pantoja Passos & Hirdan Katarina de Medeiros Costa & Edmilson dos Santos, 2024. "Analysis of the Impacts of Small-Scale LNG Projects for Energy Supply of the North Region of Brazil: The Case of Roraima," Sustainability, MDPI, vol. 16(5), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonidas Matsakas & Christos Nitsos & Dimitrij Vörös & Ulrika Rova & Paul Christakopoulos, 2017. "High-Titer Methane from Organosolv-Pretreated Spruce and Birch," Energies, MDPI, vol. 10(3), pages 1-15, February.
    2. Donohue, Ian & Coscieme, Luca & Gellner, Gabriel & Yang, Qiang & Jackson, Andrew L. & Kubiszewski, Ida & Costanza, Robert & McCann, Kevin S., 2023. "Accelerated economic recovery in countries powered by renewables," Ecological Economics, Elsevier, vol. 212(C).
    3. Joshi, Janak & Wang, Jingjing, 2018. "Manure management coupled with bioenergy production: An environmental and economic assessment of large dairies in New Mexico," Energy Economics, Elsevier, vol. 74(C), pages 197-207.
    4. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    5. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    6. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    7. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    8. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    9. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    10. Leong, Jun Xing & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Liew, Kien Ben & Ismail, Manal, 2013. "Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 575-587.
    11. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    12. Johannes Karlsson & Anders Grauers, 2023. "Agent-Based Investigation of Charger Queues and Utilization of Public Chargers for Electric Long-Haul Trucks," Energies, MDPI, vol. 16(12), pages 1-25, June.
    13. Aprea, Ciro & Maiorino, Angelo, 2011. "An experimental investigation of the global environmental impact of the R22 retrofit with R422D," Energy, Elsevier, vol. 36(2), pages 1161-1170.
    14. Wang, Yanxiang & Ali Almazrooei, Shaikha & Kapsalyamova, Zhanna & Diabat, Ali & Tsai, I-Tsung, 2016. "Utility subsidy reform in Abu Dhabi: A review and a Computable General Equilibrium analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1352-1362.
    15. Liou, Hwa Meei, 2011. "A comparison of the legislative framework and policies in Taiwan's Four GHG reduction acts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1723-1747, May.
    16. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    17. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Pambudi, Nugroho Agung, 2018. "Classification of geothermal resources in Indonesia by applying exergy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 499-506.
    18. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    19. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:4:p:1811-1818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.