IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i1p59-74.html
   My bibliography  Save this article

Catalyzing strategic transformation to a low-carbon economy: A CCS roadmap for China

Author

Listed:
  • Liu, Hengwei
  • Gallagher, Kelly Sims

Abstract

China now faces the three hard truths of thirsting for more oil, relying heavily on coal, and ranking first in global carbon dioxide (CO2) emissions. Given these truths, two key questions must be addressed to develop a low-carbon economy: how to use coal in a carbon-constrained future? How to increase domestic oil supply to enhance energy security? Carbon Capture and Storage (CCS) may be a technological solution that can deal with today's energy and environmental needs while enabling China to move closer to a low-carbon energy future. This paper has been developed to propose a possible CCS roadmap for China. To develop the roadmap, we first explore major carbon capture opportunities in China and then identify critical CCS-enabling technologies, as well as analyze their current status and future prospects. We find that coal gasification or polygeneration in combination with CCS could be a nearly unbeatable combination for China's low-carbon future. Even without CCS, gasification offers many benefits: once coal is gasified into syngas, it can be used for many different purposes including for alternative fuels production, thereby increasing the domestic oil supply and the flexibility of the energy system.

Suggested Citation

  • Liu, Hengwei & Gallagher, Kelly Sims, 2010. "Catalyzing strategic transformation to a low-carbon economy: A CCS roadmap for China," Energy Policy, Elsevier, vol. 38(1), pages 59-74, January.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:1:p:59-74
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00641-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Seong Kon & Mogi, Gento & Kim, Jong Wook, 2009. "Energy technology roadmap for the next 10 years: The case of Korea," Energy Policy, Elsevier, vol. 37(2), pages 588-596, February.
    2. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    2. Xiaolong, Chen & Yiqiang, Li & Xiang, Tang & Huan, Qi & Xuebing, Sun & Jianghao, Luo, 2021. "Effect of gravity segregation on CO2 flooding under various pressure conditions: Application to CO2 sequestration and oil production," Energy, Elsevier, vol. 226(C).
    3. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    4. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    5. Christian Leßmann & Arne Steinkraus, 2016. "Kurz zum Klima: »Carbon Capture and Storage« – was kostet die Emissionsvermeidung?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(05), pages 51-54, March.
    6. Aydin, Gokhan & Karakurt, Izzet & Aydiner, Kerim, 2010. "Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety," Energy Policy, Elsevier, vol. 38(9), pages 5072-5080, September.
    7. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    8. Stewart Russell & Nils Markusson & Vivian Scott, 2012. "What will CCS demonstrations demonstrate?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 651-668, August.
    9. Simon Berner & Hartmut Derler & René Rehorska & Stephan Pabst & Ulrike Seebacher, 2019. "Roadmapping to Enhance Local Food Supply: Case Study of a City-Region in Austria," Sustainability, MDPI, vol. 11(14), pages 1-16, July.
    10. Dongdong Song & Tong Jiang & Chuanping Rao, 2022. "Review of Policy Framework for the Development of Carbon Capture, Utilization and Storage in China," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    11. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Hu, Guoping, 2022. "Print media representations of carbon capture utilization and storage (CCUS) technology in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    13. Cavalcanti, Eduardo J.C. & Lima, Matheus S.R. & de Souza, Gabriel F., 2020. "Comparison of carbon capture system and concentrated solar power in natural gas combined cycle: Exergetic and exergoenvironmental analyses," Renewable Energy, Elsevier, vol. 156(C), pages 1336-1347.
    14. Kemp, Alexander G. & Sola Kasim, A., 2010. "A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf," Energy Policy, Elsevier, vol. 38(7), pages 3652-3667, July.
    15. Maitri Verma & Alok Kumar Verma & A. K. Misra, 2021. "Mathematical modeling and optimal control of carbon dioxide emissions from energy sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13919-13944, September.
    16. Junya Wang & Qiuyun Pu & Ping Ning & Shijian Lu, 2021. "Activated carbon‐based composites for capturing CO2: a review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 377-393, April.
    17. Christian von Hirschhausen & Johannes Herold & Pao-Yu Oei, 2012. "How a "Low Carbon" Innovation Can Fail--Tales from a "Lost Decade" for Carbon Capture, Transport, and Sequestration (CCTS)," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    18. Qingchang Li & Seungkook Roh & Jin Won Lee, 2020. "Segmenting the South Korean Public According to Their Preferred Direction for Electricity Mix Reform," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    19. Shin, Jungwoo & Lee, Chul-Yong & Kim, Hongbum, 2016. "Technology and demand forecasting for carbon capture and storage technology in South Korea," Energy Policy, Elsevier, vol. 98(C), pages 1-11.
    20. Pappalardo, G. & Selvaggi, R. & Pecorino, B., 2022. "Biomethane production potential in Southern Italy: An empirical approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    More about this item

    Keywords

    CCS IGCC Coal gasification;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:1:p:59-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.