IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i7p2788-2797.html
   My bibliography  Save this article

The impact of microgeneration upon the Dutch balancing market

Author

Listed:
  • Van der Veen, Reinier A.C.
  • De Vries, Laurens J.

Abstract

The share of microgeneration (power generation at the level of households and small businesses) in the Dutch electricity system continues to grow. Over time, this development may pose a threat to the reliability and efficiency of the Dutch electricity balancing market. We investigated possible changes to the design of the Dutch balancing market that can maintain or even improve upon its current operational performance level. The first step of the research was an analysis of the existing Dutch balancing market. It consists of three main instruments: programme responsibility, the single buyer market for regulating and reserve power (RRP), and imbalance settlement. The balancing market currently functions satisfactorily. Subsequently, the effects of large-scale development of microgeneration in the Netherlands were evaluated with a qualitative scenario analysis. Four microgeneration scenarios and two methods for allocating the household electricity consumption and generation were considered. The four scenarios concerned large-scale penetration of PV, heat-led micro CHP, electricity-led micro CHP operated by the household consumer, and electricity-led micro CHP operated by the supply company. The last scenario was found to have the strongest positive net effect. Finally, six design options were identified for improving the Dutch balancing market design in case the share of microgeneration would increase substantially. Of these six options, adjusting the profile methodology and the regulation of smart meters are no-regret options that can be implemented immediately. The attractiveness of the other options depends upon the microgeneration portfolio that emerges, the manageability of large metering data flows, and the nature of the technical effects of large-scale microgeneration penetration.

Suggested Citation

  • Van der Veen, Reinier A.C. & De Vries, Laurens J., 2009. "The impact of microgeneration upon the Dutch balancing market," Energy Policy, Elsevier, vol. 37(7), pages 2788-2797, July.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:7:p:2788-2797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00159-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    2. Hawkes, A.D. & Leach, M.A., 2007. "Cost-effective operating strategy for residential micro-combined heat and power," Energy, Elsevier, vol. 32(5), pages 711-723.
    3. Peacock, A.D. & Newborough, M., 2007. "Controlling micro-CHP systems to modulate electrical load profiles," Energy, Elsevier, vol. 32(7), pages 1093-1103.
    4. Paatero, Jukka V. & Lund, Peter D., 2007. "Effects of large-scale photovoltaic power integration on electricity distribution networks," Renewable Energy, Elsevier, vol. 32(2), pages 216-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doorman, Gerard L. & van der Veen, Reinier, 2013. "An analysis of design options for markets for cross-border balancing of electricity," Utilities Policy, Elsevier, vol. 27(C), pages 39-48.
    2. Frank Pierie & Christian E. J. van Someren & Sandór N. M. Kruse & Gideon A. H. Laugs & René M. J. Benders & Henri C. Moll, 2021. "Local Balancing of the Electricity Grid in a Renewable Municipality; Analyzing the Effectiveness and Cost of Decentralized Load Balancing Looking at Multiple Combinations of Technologies," Energies, MDPI, vol. 14(16), pages 1-35, August.
    3. Eva Niesten & Albert Jolink, 2014. "Absence of a market in the Dutch balancing mechanism: European rules versus specific investments," European Journal of Law and Economics, Springer, vol. 38(1), pages 71-90, August.
    4. Mohd Effendi Amran & Mohd Nabil Muhtazaruddin & Firdaus Muhammad-Sukki & Nurul Aini Bani & Tauran Zaidi Ahmad Zaidi & Khairul Azmy Kamaluddin & Jorge Alfredo Ardila-Rey, 2019. "Photovoltaic Expansion-Limit through a Net Energy Metering Scheme for Selected Malaysian Public Hospitals," Sustainability, MDPI, vol. 11(18), pages 1-30, September.
    5. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    6. Provance, Mike & Donnelly, Richard G. & Carayannis, Elias G., 2011. "Institutional influences on business model choice by new ventures in the microgenerated energy industry," Energy Policy, Elsevier, vol. 39(9), pages 5630-5637, September.
    7. Leenheer, Jorna & de Nooij, Michiel & Sheikh, Omer, 2011. "Own power: Motives of having electricity without the energy company," Energy Policy, Elsevier, vol. 39(9), pages 5621-5629, September.
    8. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
    9. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    10. Jimenez, Maritza & Franco, Carlos J. & Dyner, Isaac, 2016. "Diffusion of renewable energy technologies: The need for policy in Colombia," Energy, Elsevier, vol. 111(C), pages 818-829.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orioli, Aldo & Di Gangi, Alessandra, 2013. "Load mismatch of grid-connected photovoltaic systems: Review of the effects and analysis in an urban context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 13-28.
    2. Hawkes, A.D. & Leach, M.A., 2008. "On policy instruments for support of micro combined heat and power," Energy Policy, Elsevier, vol. 36(8), pages 2963-2972, August.
    3. Orioli, Aldo & Di Gangi, Alessandra, 2014. "Review of the energy and economic parameters involved in the effectiveness of grid-connected PV systems installed in multi-storey buildings," Applied Energy, Elsevier, vol. 113(C), pages 955-969.
    4. Haurant, P. & Muselli, M. & Gaillard, L. & Oberti, P., 2022. "A new methodology to analyse and optimize territorial compensations of solar radiation intermittency: A case study in Corsica Island (France)," Renewable Energy, Elsevier, vol. 185(C), pages 598-610.
    5. Navon, Aviad & Kulbekov, Pavel & Dolev, Shahar & Yehuda, Gil & Levron, Yoash, 2020. "Integration of distributed renewable energy sources in Israel: Transmission congestion challenges and policy recommendations," Energy Policy, Elsevier, vol. 140(C).
    6. Hawkes, A.D. & Leach, M.A., 2008. "The capacity credit of micro-combined heat and power," Energy Policy, Elsevier, vol. 36(4), pages 1457-1469, April.
    7. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    8. Peacock, A.D. & Newborough, M., 2008. "Effect of heat-saving measures on the CO2 savings attributable to micro-combined heat and power (μCHP) systems in UK dwellings," Energy, Elsevier, vol. 33(4), pages 601-612.
    9. Aldo Orioli & Vincenzo Franzitta & Alessandra Di Gangi & Ferdinando Foresta, 2016. "The Recent Change in the Italian Policies for Photovoltaics: Effects on the Energy Demand Coverage of Grid-Connected PV Systems Installed in Urban Contexts," Energies, MDPI, vol. 9(11), pages 1-31, November.
    10. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    11. Bird, Trevor J. & Jain, Neera, 2020. "Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage," Applied Energy, Elsevier, vol. 271(C).
    12. Orioli, Aldo & Di Gangi, Alessandra, 2016. "Five-years-long effects of the Italian policies for photovoltaics on the energy demand coverage of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 113(C), pages 444-460.
    13. Richardson, David B. & Harvey, L.D.D., 2015. "Strategies for correlating solar PV array production with electricity demand," Renewable Energy, Elsevier, vol. 76(C), pages 432-440.
    14. Sabo, Mahmoud Lurwan & Mariun, Norman & Hizam, Hashim & Mohd Radzi, Mohd Amran & Zakaria, Azmi, 2017. "Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia," Applied Energy, Elsevier, vol. 191(C), pages 663-688.
    15. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    16. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    17. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    18. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    19. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    20. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:7:p:2788-2797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.