IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i12p5260-5272.html
   My bibliography  Save this article

Co-generation of biofuels for transportation and heat for district heating systems--an assessment of the national possibilities in the EU

Author

Listed:
  • Egeskog, Andrea
  • Hansson, Julia
  • Berndes, Göran
  • Werner, Sven

Abstract

Biomass gasification with subsequent synthesis to liquid or gaseous biofuels generates heat possible to use in district heating (DH) systems. The purpose here is to estimate the heat sink capacity of DH systems in the individual EU nations and assess the possibilities for biomass-gasification-based co-generation of synthetic biofuels for transportation and heat (CBH) for DH systems in the EU countries. The possibilities are assessed (i) assuming different levels of competiveness relative to other heat supply options of CBH corresponding to the EU target for renewable energy for transportation for 2020 and (ii) assuming that the potential expansion of the DH systems by 2020 is met with CBH. In general, the size of the DH heat sinks represented by the existing national aggregated DH systems can accommodate CBH at a scale that is significant compared to the 2020 renewable transportation target. The possibilities for CBH also depend on its cost-competitiveness compared to, e.g., fossil-fuel-based CHP. The possible expansion of the DH systems by 2020 represents an important opportunity for CBH and is also influenced by the potential increase in the use of other heat supply options, such as, industrial waste heat, waste incineration, and CHP.

Suggested Citation

  • Egeskog, Andrea & Hansson, Julia & Berndes, Göran & Werner, Sven, 2009. "Co-generation of biofuels for transportation and heat for district heating systems--an assessment of the national possibilities in the EU," Energy Policy, Elsevier, vol. 37(12), pages 5260-5272, December.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5260-5272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00567-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Knutsson, David & Sahlin, Jenny & Werner, Sven & Ekvall, Tomas & Ahlgren, Erik O., 2006. "HEATSPOT—a simulation tool for national district heating analyses," Energy, Elsevier, vol. 31(2), pages 278-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Udomsri, Seksan & Martin, Andrew R. & Martin, Viktoria, 2011. "Thermally driven cooling coupled with municipal solid waste-fired power plant: Application of combined heat, cooling and power in tropical urban areas," Applied Energy, Elsevier, vol. 88(5), pages 1532-1542, May.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    3. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    4. Wetterlund, Elisabeth & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg, 2012. "Optimal localisation of biofuel production on a European scale," Energy, Elsevier, vol. 41(1), pages 462-472.
    5. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2011. "Promoting renewable energy sources for heating and cooling in EU-27 countries," Energy Policy, Elsevier, vol. 39(6), pages 3803-3812, June.
    6. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    7. Johansson, Daniella & Rootzén, Johan & Berntsson, Thore & Johnsson, Filip, 2012. "Assessment of strategies for CO2 abatement in the European petroleum refining industry," Energy, Elsevier, vol. 42(1), pages 375-386.
    8. Levihn, F. & Nuur, C. & Laestadius, S., 2014. "Marginal abatement cost curves and abatement strategies: Taking option interdependency and investments unrelated to climate change into account," Energy, Elsevier, vol. 76(C), pages 336-344.
    9. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    10. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    11. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    12. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    13. Levihn, Fabian, 2014. "CO2 emissions accounting: Whether, how, and when different allocation methods should be used," Energy, Elsevier, vol. 68(C), pages 811-818.
    14. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Bolkesjø, Torjus Folsland, 2017. "The prospects of bioenergy in the future energy system of Inland Norway," Energy, Elsevier, vol. 121(C), pages 78-91.
    15. Brueckner, Sarah & Miró, Laia & Cabeza, Luisa F. & Pehnt, Martin & Laevemann, Eberhard, 2014. "Methods to estimate the industrial waste heat potential of regions – A categorization and literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 164-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eriksson, Marcus & Vamling, Lennart, 2007. "Future use of heat pumps in Swedish district heating systems: Short- and long-term impact of policy instruments and planned investments," Applied Energy, Elsevier, vol. 84(12), pages 1240-1257, December.
    2. Jae-Ki Byun & Young-Don Choi & Jong-Keun Shin & Myung-Ho Park & Dong-Kurl Kwak, 2012. "Study on the Development of an Optimal Heat Supply Control Algorithm for Group Energy Apartment Buildings According to the Variation of Outdoor Air Temperature," Energies, MDPI, vol. 5(5), pages 1-19, May.
    3. Joelsson, Anna & Gustavsson, Leif, 2009. "District heating and energy efficiency in detached houses of differing size and construction," Applied Energy, Elsevier, vol. 86(2), pages 126-134, February.
    4. Sandvall, Akram Fakhri & Ahlgren, Erik O. & Ekvall, Tomas, 2016. "System profitability of excess heat utilisation – A case-based modelling analysis," Energy, Elsevier, vol. 97(C), pages 424-434.
    5. Torchio, Marco F. & Genon, Giuseppe & Poggio, Alberto & Poggio, Marco, 2009. "Merging of energy and environmental analyses for district heating systems," Energy, Elsevier, vol. 34(3), pages 220-227.
    6. Münster, Marie & Meibom, Peter, 2011. "Optimization of use of waste in the future energy system," Energy, Elsevier, vol. 36(3), pages 1612-1622.
    7. Münster, Marie & Lund, Henrik, 2009. "Use of waste for heat, electricity and transport—Challenges when performing energy system analysis," Energy, Elsevier, vol. 34(5), pages 636-644.
    8. András Mezősi & Enikő Kácsor & à kos Beöthy & à gnes Törőcsik & László Szabó, 2017. "Modelling support policies and renewable energy sources deployment in the Hungarian district heating sector," Energy & Environment, , vol. 28(1-2), pages 70-87, March.
    9. Hofbauer, Leonhard & McDowall, Will & Pye, Steve, 2022. "Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Moser, Simon & Puschnigg, Stefan & Rodin, Valerie, 2020. "Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems," Energy, Elsevier, vol. 200(C).
    11. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    12. Sandvall, Akram Fakhri & Börjesson, Martin & Ekvall, Tomas & Ahlgren, Erik O., 2015. "Modelling environmental and energy system impacts of large-scale excess heat utilisation – A regional case study," Energy, Elsevier, vol. 79(C), pages 68-79.
    13. Knutsson, David & Werner, Sven & Ahlgren, Erik O., 2006. "Short-term impact of green certificates and CO2 emissions trading in the Swedish district heating sector," Applied Energy, Elsevier, vol. 83(12), pages 1368-1383, December.
    14. Byun, Sun-Joon & Park, Hyun-Sik & Yi, Sung-Jae & Song, Chul-Hwa & Choi, Young-Don & Lee, So-Hyeon & Shin, Jong-Keun, 2015. "Study on the optimal heat supply control algorithm for district heating distribution network in response to outdoor air temperature," Energy, Elsevier, vol. 86(C), pages 247-256.
    15. Ola Eriksson & Göran Finnveden, 2017. "Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO 2 Emissions," Energies, MDPI, vol. 10(4), pages 1-18, April.
    16. Forsell, Nicklas & Guerassimoff, Gilles & Athanassiadis, Dimitris & Thivolle-Casat, Alain & Lorne, Daphné & Millet, Guy & Assoumou, Edi, 2013. "Sub-national TIMES model for analyzing future regional use of biomass and biofuels in Sweden and France," Renewable Energy, Elsevier, vol. 60(C), pages 415-426.
    17. Amiri, Shahnaz & Weinberger, Gottfried, 2018. "Increased cogeneration of renewable electricity through energy cooperation in a Swedish district heating system - A case study," Renewable Energy, Elsevier, vol. 116(PA), pages 866-877.
    18. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    19. Mezősi, András & Beöthy, Ákos & Kácsor, Enikő & Törőcsik, Ágnes, 2016. "A magyarországi távhő-szabályozás modellezése. A megújuló energiára alapozott hőtermelés [Modelling policy options in the district heating sector, with a focus on renewable consumption]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1149-1176.
    20. Knutsson, David & Werner, Sven & Ahlgren, Erik O., 2006. "Combined heat and power in the Swedish district heating sector--impact of green certificates and CO2 trading on new investments," Energy Policy, Elsevier, vol. 34(18), pages 3942-3952, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5260-5272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.