IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i10p3899-3905.html
   My bibliography  Save this article

Expansion of isolated electrical systems in the Amazon: An approach using fuzzy multi-objective mathematical programming

Author

Listed:
  • Bitar, Sandro D.B.
  • da Costa Junior, Carlos T.
  • Barreiros, José A.L.
  • Neto, João C. do L.

Abstract

This paper examines some problems encountered in the expansion of isolated electrical systems (IES) in the Amazon region, more precisely, the thermoelectric systems used in that region. Supposing a certain degree of uncertainty in energy consumption, we evaluate the expansion of thermoelectric power from firewood and diesel fuel, together with variations for costs, CO2 emissions, and number of direct jobs (NDJ) generated with the use of these technologies. The analysis is accomplished by using fuzzy multi-objective mathematical programming, and interpreting each objective function both by itself and in combination with the others, through a fuzzy multi-objective parametrization. The scenarios are defined by the energy consumption percentage increase, limited to be below some admissible maximum value, while still considering variations in the installed power. The costs, CO2 emission, and the NDJ generated are analyzed and compared with the largest values obtained with the model of crisp mathematical programming, used for the original configuration. Finally, in Section 4, we present the results and respective analyses for the finished simulation.

Suggested Citation

  • Bitar, Sandro D.B. & da Costa Junior, Carlos T. & Barreiros, José A.L. & Neto, João C. do L., 2009. "Expansion of isolated electrical systems in the Amazon: An approach using fuzzy multi-objective mathematical programming," Energy Policy, Elsevier, vol. 37(10), pages 3899-3905, October.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:10:p:3899-3905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00336-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Jimenez, Mariano & Arenas, Mar & Bilbao, Amelia & Rodri'guez, M. Victoria, 2007. "Linear programming with fuzzy parameters: An interactive method resolution," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1599-1609, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neto, João C. do L. & da Costa Junior, Carlos T. & Bitar, Sandro D.B. & Junior, Walter B., 2011. "Forecasting of energy and diesel consumption and the cost of energy production in isolated electrical systems in the Amazon using a fuzzification process in time series models," Energy Policy, Elsevier, vol. 39(9), pages 4947-4955, September.
    2. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    3. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    2. Patoghi, Amirhosein & Mousavi, Seyed Meysam, 2021. "A new approach for material ordering and multi-mode resource constraint project scheduling problem in a multi-site context under interval-valued fuzzy uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    3. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    4. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    5. Tubagus Robbi Megantara & Sudradjat Supian & Diah Chaerani, 2022. "Strategies to Reduce Ride-Hailing Fuel Consumption Caused by Pick-Up Trips: A Mathematical Model under Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    6. Zhang, Y.M. & Lu, H.W. & Nie, X.H. & He, L. & Du, P., 2014. "An interactive inexact fuzzy bounded programming approach for agricultural water quality management," Agricultural Water Management, Elsevier, vol. 133(C), pages 104-111.
    7. S. Wang & G. Huang, 2012. "Identifying Optimal Water Resources Allocation Strategies through an Interactive Multi-Stage Stochastic Fuzzy Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2015-2038, May.
    8. Mula, Josefa & Peidro, David & Poler, Raul, 2010. "The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand," International Journal of Production Economics, Elsevier, vol. 128(1), pages 136-143, November.
    9. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
    10. Manuel Díaz-Madroñero & Josefa Mula & Mariano Jiménez & David Peidro, 2017. "A rolling horizon approach for material requirement planning under fuzzy lead times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2197-2211, April.
    11. Jyotiba Gurav & D. Regulwar, 2012. "Multi Objective Sustainable Irrigation Planning with Decision Parameters and Decision Variables Fuzzy in Nature," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 3005-3021, August.
    12. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    13. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    14. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    15. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    16. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    17. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    18. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    19. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    20. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:10:p:3899-3905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.