IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i7p2536-2543.html
   My bibliography  Save this article

The crisis of gasoline consumption in the Iran's transportation sector

Author

Listed:
  • Houri Jafari, H.
  • Baratimalayeri, A.

Abstract

Fossil fuels have the greatest share in supplying the world's energy demands. Regarding the limited natural resources, fuel consumption management and energy planning in the end-user sectors are two great matters of importance. Among the fossil fuels, gasoline is the principal fuel for light-duty vehicles. In Iran, fuel consumption, especially that of gasoline, has increased sharply with the growth rate of 10.2% for the year 2006 in comparison with that in 2005, turning into a big crisis in the recent years. On the other hand, enormous subsidies for importing 40% of domestic demands, which have reached more than 10 billion US$, are too much to be supplied. In this study, we have assessed the gasoline consumption, production, import and prices; reviewed main causes of the tremendous growth rate of consumption, current conservation policies and their advantages or disadvantages (SWOT analysis); proposed short- to long-term solutions and strategies for efficient gasoline consumption management; and finally, current strategies and proposed solutions are analyzed and evaluated. A foregone conclusion strongly suggests that not only the low price of motor gasoline but also mass production of vehicles with the conventional technology, likewise, affects motor gasoline demand. A second conclusion is that gasoline crisis in Iran has no straight solution, and that fundamental strategies and policies are needed to solve the problem.

Suggested Citation

  • Houri Jafari, H. & Baratimalayeri, A., 2008. "The crisis of gasoline consumption in the Iran's transportation sector," Energy Policy, Elsevier, vol. 36(7), pages 2536-2543, July.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2536-2543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00128-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zachariadis, Theodoros & Kouvaritakis, Nikos, 2003. "Long-term outlook of energy use and CO2 emissions from transport in Central and Eastern Europe," Energy Policy, Elsevier, vol. 31(8), pages 759-773, June.
    2. Birol, F. & Guerer, N., 1993. "Modelling the transport sector fuel demand for developng economies," Energy Policy, Elsevier, vol. 21(12), pages 1163-1172, December.
    3. Bose, Ranjan Kumar & Srinivasachary, V, 1997. "Policies to reduce energy use and environmental emissions in the transport sector : A case of Delhi city," Energy Policy, Elsevier, vol. 25(14-15), pages 1137-1150, December.
    4. Majid Ahmadian & Mona Chitnis & Lester C Hunt, 2007. "Gasoline Demand, Pricing Policy and Social Welfare in Iran," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 117, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    5. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    6. Norman, Marc E., 1994. "Reducing gasoline use: A multipronged approach," Energy Policy, Elsevier, vol. 22(1), pages 37-39, January.
    7. Sakaguchi, Takahiro, 2000. "Influence of diffusion of fuel-efficient motor vehicles on gasoline demand for individual user owned passenger cars," Energy Policy, Elsevier, vol. 28(12), pages 895-903, October.
    8. Zachariadis, Theodoros, 2006. "On the baseline evolution of automobile fuel economy in Europe," Energy Policy, Elsevier, vol. 34(14), pages 1773-1785, September.
    9. Rodekohr, Mark E., 1979. "Demand for transportation fuels in the oecd: A temporal cross-section specification," Applied Energy, Elsevier, vol. 5(3), pages 223-231, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khadem Sameni, Melody & Barzegar Tilenoie, Amine & Dini, Niloofar, 2021. "Will modal shift occur from subway to other modes of transportation in the post-corona world in developing countries?," Transport Policy, Elsevier, vol. 111(C), pages 82-89.
    2. Mohamad Taghvaee, Vahid & Parsa, Hojat, 2015. "Economic growth and environmental pollution in Iran: evidence from manufacturing and services sectors," MPRA Paper 67885, University Library of Munich, Germany.
    3. Mohamad Taghvaee, Vahid & Hajiani, Parviz, 2014. "Price and Income Elasticities of Gasoline Demand in Iran: Using Static, ECM, and Dynamic Models in Short, Intermediate, and Long Run," MPRA Paper 70054, University Library of Munich, Germany.
    4. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    5. Sylvia Mardiana & Ferdinand Saragih & Martani Huseini, 2020. "Forecasting Gasoline Demand in Indonesia Using Time Series," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 132-145.
    6. Assareh, E. & Behrang, M.A. & Assari, M.R. & Ghanbarzadeh, A., 2010. "Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran," Energy, Elsevier, vol. 35(12), pages 5223-5229.
    7. Vahid Mohamad Taghvaee & Clever Mavuka & Jalil Khodaparast Shirazi, 2017. "Economic growth and energy consumption in Iran: an ARDL approach including renewable and non-renewable energies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2405-2420, December.
    8. Qiguo Gong & Limin Rong & Hui Wang, 2019. "China?s Manufacturing Strategy Choice: An Integrated Strategic Analysis Framework Combining SWOT and Logical Growth Models," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(11), pages 1290-1305, November.
    9. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    10. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    11. Shekarchian, M. & Moghavvemi, M. & Zarifi, F. & Moghavvemi, S. & Motasemi, F. & Mahlia, T.M.I., 2017. "Impact of infrastructural policies to reduce travel time expenditure of car users with significant reductions in energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 327-335.
    12. Miremadi, Tahereh, 2020. "Coupling multilevel perspective with causal layered analysis on non-reflexive societies the case of socio-technical system of car fuel in Iran," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    13. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    14. Dudlák, Tamás, 2018. "After the sanctions: Policy challenges in transition to a new political economy of the Iranian oil and gas sectors," Energy Policy, Elsevier, vol. 121(C), pages 464-475.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clara Pardo Martínez, 2011. "Energy efficiency in the automotive industry evidence from Germany and Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(2), pages 367-383, April.
    2. Huo, Hong & Yao, Zhiliang & He, Kebin & Yu, Xin, 2011. "Fuel consumption rates of passenger cars in China: Labels versus real-world," Energy Policy, Elsevier, vol. 39(11), pages 7130-7135.
    3. Kakali Kanjilal & Sajal Ghosh, 2018. "Revisiting income and price elasticity of gasoline demand in India: new evidence from cointegration tests," Empirical Economics, Springer, vol. 55(4), pages 1869-1888, December.
    4. Sonmez, Mustafa & Akgüngör, Ali Payıdar & Bektaş, Salih, 2017. "Estimating transportation energy demand in Turkey using the artificial bee colony algorithm," Energy, Elsevier, vol. 122(C), pages 301-310.
    5. Pongthanaisawan, Jakapong & Sorapipatana, Chumnong, 2013. "Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options," Applied Energy, Elsevier, vol. 101(C), pages 288-298.
    6. Afshin Ghorbani & Mohammad Reza Rahimpour & Younes Ghasemi & Sona Raeissi, 2018. "The Biodiesel of Microalgae as a Solution for Diesel Demand in Iran," Energies, MDPI, vol. 11(4), pages 1-17, April.
    7. Hoxha, Julian & Çodur, Muhammed Yasin & Mustafaraj, Enea & Kanj, Hassan & El Masri, Ali, 2023. "Prediction of transportation energy demand in Türkiye using stacking ensemble models: Methodology and comparative analysis," Applied Energy, Elsevier, vol. 350(C).
    8. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
    9. Muhammad Muhitur Rahman & Syed Masiur Rahman & Md Shafiullah & Md Arif Hasan & Uneb Gazder & Abdullah Al Mamun & Umer Mansoor & Mohammad Tamim Kashifi & Omer Reshi & Md Arifuzzaman & Md Kamrul Islam &, 2022. "Energy Demand of the Road Transport Sector of Saudi Arabia—Application of a Causality-Based Machine Learning Model to Ensure Sustainable Environment," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    10. Huo, Hong & He, Kebin & Wang, Michael & Yao, Zhiliang, 2012. "Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles," Energy Policy, Elsevier, vol. 43(C), pages 30-36.
    11. Sierra, Jaime Cevallos, 2016. "Estimating road transport fuel consumption in Ecuador," Energy Policy, Elsevier, vol. 92(C), pages 359-368.
    12. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
    13. Huo, Hong & Zhang, Qiang & He, Kebin & Yao, Zhiliang & Wang, Michael, 2012. "Vehicle-use intensity in China: Current status and future trend," Energy Policy, Elsevier, vol. 43(C), pages 6-16.
    14. Ziru Feng & Tian Cai & Kangli Xiang & Chenxi Xiang & Lei Hou, 2019. "Evaluating the Impact of Fossil Fuel Vehicle Exit on the Oil Demand in China," Energies, MDPI, vol. 12(14), pages 1-18, July.
    15. Xiaowei Song & Yongpei Hao, 2019. "Vehicular Emission Inventory and Reduction Scenario Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 16(23), pages 1-21, November.
    16. Yu, Wei & Pagani, Roberto & Huang, Lei, 2012. "CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities," Energy Policy, Elsevier, vol. 47(C), pages 298-308.
    17. Walls, W.D., 2010. "Petroleum refining industry in China," Energy Policy, Elsevier, vol. 38(5), pages 2110-2115, May.
    18. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    19. Kovacevic, Vujadin & Wesseler, Justus, 2010. "Cost-effectiveness analysis of algae energy production in the EU," Energy Policy, Elsevier, vol. 38(10), pages 5749-5757, October.
    20. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2536-2543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.