IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i12p4544-4547.html
   My bibliography  Save this article

What is the relationship between built form and energy use in dwellings?

Author

Listed:
  • Wright, Andrew

Abstract

Energy is used in dwellings to provide four services: space heating, hot water, lighting and to power appliances. This paper describes how the usage of energy in a UK home results from a complex interaction between built form, location, energy-using equipment, occupants and the affordability of fuel. Current models with standard occupancy predict that energy use will be strongly related to size and built form, but surveys of real homes show only weak correlations, across all types of dwelling. Recent research has given us insights into occupancy factors including preferred comfort, 'take-back' from thermal efficiency improvements, and patterns of electricity use. Space heating is on a downward trend and is low in new dwellings. Energy use for lights and appliances, which is only weakly related to built form, is increasing. Strong legislation, combined with low-carbon technologies, will be needed to counteract this trend. Future challenges discussed include increases in real energy prices and climate change mitigation efforts, which are likely to improve the existing stock. Challenging targets are now in place for new housing to move towards low or zero energy and carbon standards. In the longer term, dwellings will demand less energy. Alternatives to gas for space heating will be increasingly common, including ground source heat and local combined heat and power (CHP) from biomass, while electricity could come from a more decarbonised electricity system. However, these improvements must be set alongside a demand for many new homes, demographic trends towards smaller households, and a more holistic approach to overall carbon use including personal transport.

Suggested Citation

  • Wright, Andrew, 2008. "What is the relationship between built form and energy use in dwellings?," Energy Policy, Elsevier, vol. 36(12), pages 4544-4547, December.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:12:p:4544-4547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00479-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theodoridou, Ifigeneia & Karteris, Marinos & Mallinis, Georgios & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6239-6261.
    2. Gordon Mitchell & Anthony Hargreaves & Anil Namdeo & Marcial Echenique, 2011. "Land Use, Transport, and Carbon Futures: The Impact of Spatial Form Strategies in Three UK Urban Regions," Environment and Planning A, , vol. 43(9), pages 2143-2163, September.
    3. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    4. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    5. Scott Kelly & Michael Pollitt & Doug Crawford-Brown, 2011. "Building performance evaluation and certification in the UK: a critical review of SAP?," Working Papers EPRG 1219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Betto, Frida & Garengo, Patrizia & Lorenzoni, Arturo, 2020. "A new measure of Italian hidden energy poverty," Energy Policy, Elsevier, vol. 138(C).
    7. Hope, Alexander John & Booth, Alexander, 2014. "Attitudes and behaviours of private sector landlords towards the energy efficiency of tenanted homes," Energy Policy, Elsevier, vol. 75(C), pages 369-378.
    8. Michael Crilly & Mark Lemon & Andrew J Wright & Matthew B Cook & David Shaw, 2012. "Retrofitting Homes for Energy Efficiency: An Integrated Approach to Innovation in the Low-Carbon Overhaul of Uk Social Housing," Energy & Environment, , vol. 23(6-7), pages 1027-1055, October.
    9. Stefan Bouzarovski, 2014. "Energy poverty in the European Union: landscapes of vulnerability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 276-289, May.
    10. Lidberg, T. & Olofsson, T. & Trygg, L., 2016. "System impact of energy efficient building refurbishment within a district heated region," Energy, Elsevier, vol. 106(C), pages 45-53.
    11. Saska Petrova & Michael Gentile & Ilkka Henrik Mäkinen & Stefan Bouzarovski, 2013. "Perceptions of Thermal Comfort and Housing Quality: Exploring the Microgeographies of Energy Poverty in Stakhanov, Ukraine," Environment and Planning A, , vol. 45(5), pages 1240-1257, May.
    12. Stephan, André & Crawford, Robert H., 2016. "The relationship between house size and life cycle energy demand: Implications for energy efficiency regulations for buildings," Energy, Elsevier, vol. 116(P1), pages 1158-1171.
    13. Friege, Jonas & Chappin, Emile, 2014. "Modelling decisions on energy-efficient renovations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 196-208.
    14. Singh, Manoj Kumar & Attia, Shady & Mahapatra, Sadhan & Teller, Jacques, 2016. "Assessment of thermal comfort in existing pre-1945 residential building stock," Energy, Elsevier, vol. 98(C), pages 122-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:12:p:4544-4547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.