IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i10p3745-3753.html
   My bibliography  Save this article

The principal-agent problem and transport energy use: Case study of company lease cars in the Netherlands

Author

Listed:
  • Graus, Wina
  • Worrell, Ernst

Abstract

Barriers exist for improvement of energy efficiency, of which the principal-agent problem is considered an important one. The principal-agent problem is a potential barrier for energy policies based on economic instruments, as the decision maker may be partially insulated from the price signal given by such policies. We estimate the size and the impact of the principal-agent problem for cars provided by companies as a benefit to employees in the Netherlands. Of all passenger cars in the Netherlands, 11% is classified as company cars, which consume 21% of the total energy consumption by passenger cars. As company cars are newer, operate more diesel engines, but are also larger, the fuel efficiency is slightly worse than that of private cars. Company cars seem to drive longer distances for commuting than the national average of private cars. Together, this might result in a net 1-7% increase of all fuel use of passenger cars in the Netherlands. This indicates that there is potential to reduce energy consumption of company cars and a need for policies aimed at improving energy efficiency of company cars.

Suggested Citation

  • Graus, Wina & Worrell, Ernst, 2008. "The principal-agent problem and transport energy use: Case study of company lease cars in the Netherlands," Energy Policy, Elsevier, vol. 36(10), pages 3745-3753, October.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:10:p:3745-3753
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00343-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farla, Jacco C.M & Blok, Kornelis, 2000. "The use of physical indicators for the monitoring of energy intensity developments in the Netherlands, 1980–1995," Energy, Elsevier, vol. 25(7), pages 609-638.
    2. B. Howarth, Richard & Haddad, Brent M. & Paton, Bruce, 2000. "The economics of energy efficiency: insights from voluntary participation programs," Energy Policy, Elsevier, vol. 28(6-7), pages 477-486, June.
    3. Jonathan G. Koomey & Alan H. Sanstad & Leslie J. Shown, 1996. "Energy‐Efficient Lighting: Market Data, Market Imperfections, And Policy Success," Contemporary Economic Policy, Western Economic Association International, vol. 14(3), pages 98-111, July.
    4. Stephen Decanio, 1994. "Agency and Control Problems in US Corporations: The Case of Energy-efficient Investment Projects," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 1(1), pages 105-124.
    5. DeCanio, Stephen J., 1993. "Barriers within firms to energy-efficient investments," Energy Policy, Elsevier, vol. 21(9), pages 906-914, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vernon, David & Meier, Alan, 2012. "Identification and quantification of principal–agent problems affecting energy efficiency investments and use decisions in the trucking industry," Energy Policy, Elsevier, vol. 49(C), pages 266-273.
    2. Adland, Roar & Alger, Harrison & Banyte, Justina & Jia, Haiying, 2017. "Does fuel efficiency pay? Empirical evidence from the drybulk timecharter market revisited," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 1-12.
    3. Copenhagen Economics, 2010. "Company Car Taxation," Taxation Papers 22, Directorate General Taxation and Customs Union, European Commission.
    4. Benjamin Leard & Virginia McConnell & Yichen Christy Zhou, 2019. "The Effect of Fuel Price Changes on Fleet Demand for New Vehicle Fuel Economy," Journal of Industrial Economics, Wiley Blackwell, vol. 67(1), pages 127-159, March.
    5. Rehmatulla, Nishatabbas & Smith, Tristan, 2020. "The impact of split incentives on energy efficiency technology investments in maritime transport," Energy Policy, Elsevier, vol. 147(C).
    6. Rehmatulla, Nishatabbas & Smith, Tristan, 2015. "Barriers to energy efficiency in shipping: A triangulated approach to investigate the principal agent problem," Energy Policy, Elsevier, vol. 84(C), pages 44-57.
    7. von Rosenstiel, Dirk Peters & Heuermann, Daniel F. & Hüsig, Stefan, 2015. "Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles," Energy Policy, Elsevier, vol. 78(C), pages 91-101.
    8. Edward Bendit & Amnon Frenkel & Sigal Kaplan, 2011. "Knowledge-workers and the sustainable city: the travel consequences of car-related job-perks," ERSA conference papers ersa11p389, European Regional Science Association.
    9. Ángeles Longarela-Ares & Anxo Calvo-Silvosa & José-Benito Pérez-López, 2020. "The Influence of Economic Barriers and Drivers on Energy Efficiency Investments in Maritime Shipping, from the Perspective of the Principal-Agent Problem," Sustainability, MDPI, vol. 12(19), pages 1-42, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    2. O'Malley, Eoin & Scott, Susan & Sorrell, Steve, 2003. "Barriers to Energy Efficiency: Evidence from Selected Sectors," Research Series, Economic and Social Research Institute (ESRI), number PRS47.
    3. Bruce Paton, 2000. "Voluntary environmental initiatives and sustainable industry," Business Strategy and the Environment, Wiley Blackwell, vol. 9(5), pages 328-338, September.
    4. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    5. DeCanio, Stephen J. & Watkins, William E., 1998. "Information processing and organizational structure," Journal of Economic Behavior & Organization, Elsevier, vol. 36(3), pages 275-294, August.
    6. Gale Boyd & Mark Curtis, 2013. "Evidence Of An �Energy-Management Gap� In U.S. Manufacturing: Spillovers From Firm Management Practices To Energy Efficiency," Working Papers 13-25, Center for Economic Studies, U.S. Census Bureau.
    7. Nguyen, Jason, 2024. "Beyond policy impacts: Internal strategic capabilities as determinants of industrial energy efficiency implementation," Energy Policy, Elsevier, vol. 184(C).
    8. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    9. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    10. Barbara Praetorius, 1996. "Nachfrageseitiges Marktversagen auf dem Energiemarkt: Empirische Evidenz, theoretische Aspekte, politische Folgerungen," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 65(2), pages 143-155.
    11. Kounetas, Kostas & Skuras, Dimitris & Tsekouras, Kostas, 2011. "Promoting energy efficiency policies over the information barrier," Information Economics and Policy, Elsevier, vol. 23(1), pages 72-84, March.
    12. DeCanio, Stephen J, 1998. "The efficiency paradox: bureaucratic and organizational barriers to profitable energy-saving investments," Energy Policy, Elsevier, vol. 26(5), pages 441-454, April.
    13. Boyd, Gale A. & Curtis, E. Mark, 2014. "Evidence of an “Energy-Management Gap” in U.S. manufacturing: Spillovers from firm management practices to energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 68(3), pages 463-479.
    14. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    15. Brucal, Arlan & Javorcik, Beata & Love, Inessa, 2019. "Good for the environment, good for business: Foreign acquisitions and energy intensity," Journal of International Economics, Elsevier, vol. 121(C).
    16. Lim, Seong-Rin & Schoenung, Julie M., 2011. "Measurement and analysis of product energy efficiency to assist energy star criteria development: An example for desktop computers," Energy Policy, Elsevier, vol. 39(12), pages 8003-8010.
    17. Bagayev, Igor & Najman, Boris, 2014. "Money to fill the gap? Local financial development and energy intensity in Europe and Central Asia," MPRA Paper 55193, University Library of Munich, Germany.
    18. Fleming, P. D. & Webber, P. H., 2004. "Local and regional greenhouse gas management," Energy Policy, Elsevier, vol. 32(6), pages 761-771, April.
    19. Richard B. Howarth & Alan H. Sanstad, 1995. "Discount Rates And Energy Efficiency," Contemporary Economic Policy, Western Economic Association International, vol. 13(3), pages 101-109, July.
    20. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.

    More about this item

    Keywords

    Barrier Energy efficiency Transport;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:10:p:3745-3753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.