IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v195y2024ics0301421524004038.html
   My bibliography  Save this article

Regional electricity cooperation model for cost-effective electricity management with an emphasis on economic efficiency

Author

Listed:
  • Wang, Yubao
  • Zhen, Junjie

Abstract

Effectively reducing the total electricity cost while ensuring its overall efficiency is vital for the sustainable development of power systems. Herein, we develop a regional cooperation optimization model to enhance the existing power cost model. This is achieved by incorporating power trading scenarios and pollution considerations, leveraging the distinct characteristics of power generation costs from various sources. The developed regional cooperation optimization model simultaneously accounts for production efficiency and overall power costs, ensuring equitable distribution and compensation of benefits among cooperating entities. In addition, the key findings indicate that the interregional cooperation optimization model significantly reduces the total cost of electricity operations in China. Specifically, during the 11th five-year plan period, the total electricity cost in China exhibited a noteworthy decline of USD 50,876 million owing to multi-objective cooperative optimization, constituting 25.99% of the total electricity cost compared with the preoptimization period. This study identifies the eastern and western regions as principal contributors to the cost savings achieved by the interregional cooperative optimization model. Simultaneously, recognizing their significant contributions, it is recommended that the eastern and western regions provide additional cost compensation to other regions to ensure the long-term viability of the cooperative alliance.

Suggested Citation

  • Wang, Yubao & Zhen, Junjie, 2024. "Regional electricity cooperation model for cost-effective electricity management with an emphasis on economic efficiency," Energy Policy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:enepol:v:195:y:2024:i:c:s0301421524004038
    DOI: 10.1016/j.enpol.2024.114383
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524004038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bistline, John E.T. & Brown, Maxwell & Siddiqui, Sauleh A. & Vaillancourt, Kathleen, 2020. "Electric sector impacts of renewable policy coordination: A multi-model study of the North American energy system," Energy Policy, Elsevier, vol. 145(C).
    2. Poudineh, Rahmatallah & Sen, Anupama & Fattouh, Bassam, 2020. "An integrated approach to electricity sector reforms in the resource rich economies of the MENA," Energy Policy, Elsevier, vol. 138(C).
    3. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    4. Shakouri, Hamed & Pandey, Shikhar & Rahmatian, Farnoosh & Paaso, Esa A., 2023. "Does the increased electricity consumption (provided by capacity expansion and/or reliability improvement) cause economic growth?," Energy Policy, Elsevier, vol. 182(C).
    5. Su, Hongwei & Liang, Biming, 2021. "The impact of regional market integration and economic opening up on environmental total factor energy productivity in Chinese provinces," Energy Policy, Elsevier, vol. 148(PA).
    6. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    7. Singh, Anoop & Jamasb, Tooraj & Nepal, Rabindra & Toman, Michael, 2018. "Electricity cooperation in South Asia: Barriers to cross-border trade," Energy Policy, Elsevier, vol. 120(C), pages 741-748.
    8. Binning Fan & Longji Hu & Zhiguo Fan & Aifeng Liu & Lijun Yan & Fengjuan Xie & Zhenyu Liu, 2023. "Economic-emission–constrained multi-objective hybrid optimal energy flow of integrated energy systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 265-272.
    9. An, Qingxian & Wen, Yao & Ding, Tao & Li, Yongli, 2019. "Resource sharing and payoff allocation in a three-stage system: Integrating network DEA with the Shapley value method," Omega, Elsevier, vol. 85(C), pages 16-25.
    10. Han, Zhixin & Fang, Debin & Yang, Peiwen & Lei, Leyao, 2023. "Cooperative mechanisms for multi-energy complementarity in the electricity spot market," Energy Economics, Elsevier, vol. 127(PB).
    11. Cheng, Xiaobin & Liu, Pengfei & Zhu, Lei, 2024. "The impact of electricity market reform on renewable energy production," Energy Policy, Elsevier, vol. 194(C).
    12. Xue, Jian & Zhang, Wenjing & Zhao, Laijun & Zhu, Di & Li, Lei & Gong, Ruifeng, 2022. "A cooperative inter-provincial model for energy conservation that accounts for employment and social energy costs," Energy, Elsevier, vol. 239(PB).
    13. Muñoz, Juan C. & Sauma, Enzo & Muñoz, Francisco D. & Moreno, Rodrigo, 2023. "Analysis of generation investments under price controls in cross-border trade of electricity," Energy Economics, Elsevier, vol. 123(C).
    14. Claire L. Fyson & Susanne Baur & Matthew Gidden & Carl-Friedrich Schleussner, 2020. "Fair-share carbon dioxide removal increases major emitter responsibility," Nature Climate Change, Nature, vol. 10(9), pages 836-841, September.
    15. Voswinkel, Simon & Höckner, Jonas & Khalid, Abuzar & Weber, Christoph, 2022. "Sharing congestion management costs among system operators using the Shapley value," Applied Energy, Elsevier, vol. 317(C).
    16. Pineau, Pierre-Olivier & Hira, Anil & Froschauer, Karl, 2004. "Measuring international electricity integration: a comparative study of the power systems under the Nordic Council, MERCOSUR, and NAFTA," Energy Policy, Elsevier, vol. 32(13), pages 1457-1475, September.
    17. He, Weijun & Yang, Yi & Wang, Zhaohua & Zhu, Joe, 2018. "Estimation and allocation of cost savings from collaborative CO2 abatement in China," Energy Economics, Elsevier, vol. 72(C), pages 62-74.
    18. Zhu, Runqing & Lin, Boqiang, 2021. "Energy and carbon performance improvement in China's mining Industry:Evidence from the 11th and 12th five-year plan," Energy Policy, Elsevier, vol. 154(C).
    19. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2019. "Coordination of policy goals between renewable portfolio standards and carbon caps: A quantitative assessment in China," Applied Energy, Elsevier, vol. 237(C), pages 25-35.
    20. Qing Yang & Hewen Zhou & Pietro Bartocci & Francesco Fantozzi & Ondřej Mašek & Foster A. Agblevor & Zhiyu Wei & Haiping Yang & Hanping Chen & Xi Lu & Guoqian Chen & Chuguang Zheng & Chris P. Nielsen &, 2021. "Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    21. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    22. Tian, Zhe & Li, Xiaoyuan & Niu, Jide & Zhou, Ruoyu & Li, Feng, 2024. "Enhancing operation flexibility of distributed energy systems: A flexible multi-objective optimization planning method considering long-term and temporary objectives," Energy, Elsevier, vol. 288(C).
    23. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    24. Xu, Jin-Hua & Yi, Bo-Wen & Fan, Ying, 2020. "Economic viability and regulation effects of infrastructure investments for inter-regional electricity transmission and trade in China," Energy Economics, Elsevier, vol. 91(C).
    25. Zhao, Zhiying & Lan, Yanfei & Xu, Shuxian & Zou, Hongyang & Du, Huibin, 2024. "Addressing the reliability challenge: Subsidy policies for promoting renewable electricity consumption," Energy Economics, Elsevier, vol. 139(C).
    26. Böhringer, Christoph & Moslener, Ulf & Oberndorfer, Ulrich & Ziegler, Andreas, 2012. "Clean and productive? Empirical evidence from the German manufacturing industry," Research Policy, Elsevier, vol. 41(2), pages 442-451.
    27. Zhao, Wenhui & Zhang, Jiuyang & Li, Ruan & Zha, Ruiming, 2021. "A transaction case analysis of the development of generation rights trading and existing shortages in China," Energy Policy, Elsevier, vol. 149(C).
    28. Paolo Gazzotti & Johannes Emmerling & Giacomo Marangoni & Andrea Castelletti & Kaj-Ivar van der Wijst & Andries Hof & Massimo Tavoni, 2021. "Persistent inequality in economically optimal climate policies," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    29. Cubukcu, K. Mert, 2020. "The problem of fair division of surplus development rights in redevelopment of urban areas: Can the Shapley value help?," Land Use Policy, Elsevier, vol. 91(C).
    30. Timilsina, Govinda R. & Toman, Mike, 2016. "Potential gains from expanding regional electricity trade in South Asia," Energy Economics, Elsevier, vol. 60(C), pages 6-14.
    31. Pär Holmberg & Thomas Tangerås, 2023. "A Survey of Capacity Mechanisms: Lessons for the Swedish Electricity Market," The Energy Journal, , vol. 44(6), pages 275-304, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Lijun & Du, Wenjing & Zhang, Wencheng & Zhao, Laijun & Wang, Zhaohua, 2023. "An inter-provincial cooperation model under Renewable Portfolio Standard policy," Energy, Elsevier, vol. 269(C).
    2. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    3. Jia, Zhijie & Wen, Shiyan & Wang, Yao, 2023. "Power coming from the sky: Economic benefits of inter-regional power transmission in China," Energy Economics, Elsevier, vol. 119(C).
    4. Zeng, Lijun & Du, Wenjing & Zhao, Laijun & Chen, Shuai, 2024. "An inter-provincial coordinate model under Renewable Portfolio Standards policy based on tradable green certificate options trading," Renewable Energy, Elsevier, vol. 234(C).
    5. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    6. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    7. Yue, Tingyi & Wang, Honglei & Li, Chengjiang & Hu, Yu-jie, 2024. "Optimization strategies for green power and certificate trading in China considering seasonality: An evolutionary game-based system dynamics," Energy, Elsevier, vol. 311(C).
    8. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2017. "Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach," Energy Policy, Elsevier, vol. 102(C), pages 30-40.
    9. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    10. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    11. Timilsina,Govinda R. & Deluque Curiel,Ilka Fabiana & Chattopadhyay,Debabrata, 2021. "How Much Does Latin America Gain from Enhanced Cross-Border Electricity Trade in the Short Run ?," Policy Research Working Paper Series 9692, The World Bank.
    12. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    13. Xue, Jian & Guo, Meichen & Shi, Shaoqing & Zhao, Laijun, 2024. "Energy-conservation model of inter-provincial cooperation that accounts GDP and social benefits," Energy, Elsevier, vol. 290(C).
    14. Yang, Lin & Li, Fengyu & Zhang, Xian, 2016. "Chinese companies’ awareness and perceptions of the Emissions Trading Scheme (ETS): Evidence from a national survey in China," Energy Policy, Elsevier, vol. 98(C), pages 254-265.
    15. Singh, Anoop & Jamasb, Tooraj & Nepal, Rabindra & Toman, Michael, 2018. "Electricity cooperation in South Asia: Barriers to cross-border trade," Energy Policy, Elsevier, vol. 120(C), pages 741-748.
    16. Cremers, Sho & Robu, Valentin & Zhang, Peter & Andoni, Merlinda & Norbu, Sonam & Flynn, David, 2023. "Efficient methods for approximating the Shapley value for asset sharing in energy communities," Applied Energy, Elsevier, vol. 331(C).
    17. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    18. Xu, Jin-Hua & Yi, Bo-Wen & Fan, Ying, 2020. "Economic viability and regulation effects of infrastructure investments for inter-regional electricity transmission and trade in China," Energy Economics, Elsevier, vol. 91(C).
    19. Haque, H.M. Enamul & Dhakal, Shobhakar & Mostafa, S.M.G., 2020. "An assessment of opportunities and challenges for cross-border electricity trade for Bangladesh using SWOT-AHP approach," Energy Policy, Elsevier, vol. 137(C).
    20. Nepal, Rabindra & Paija, Nirash, 2019. "Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy," Energy Policy, Elsevier, vol. 132(C), pages 771-781.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:195:y:2024:i:c:s0301421524004038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.