IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v175y2023ics0301421523000381.html
   My bibliography  Save this article

The COVID-19 pandemic and the EU: From a sustainable energy transition to a green transition?

Author

Listed:
  • Crnčec, Danijel
  • Penca, Jerneja
  • Lovec, Marko

Abstract

The article examines the implications held by the EU's response to the COVID-19 pandemic for the green transition as set by the European Green Deal. It distinguishes changes in: (a) the use of policy instruments; (b) governance principles; and (c) the prioritising of policy goals as expressed via the conceptual framework of orders of change. The article assesses the extent of these changes as well as the patterns and regional variations among EU Member States, together with the Commission's role in pushing for preferential energy policy choices and encouraging the Member States' ambitions. The analysis shows the EU Energy Union governance framework was promoting the EU's climate targets' full integration into the EU's energy transition policy instruments (first order of change) even before the European Green Deal. Still, the EU's response to the COVID-19 crisis created strong financial and policy leverage to accelerate the green transition and gave an opportunity to close the gap between less ambitious and more ambitious EU countries. Many countries traditionally reliant on EU funds seized this opportunity, demonstrating the role of changed governance principles (the second order of change). However, the crisis has had an evolutionary impact, not a revolutionary one. While coherence between the energy and climate goals remains high, the EU's energy transition is falling short in fully integrating biodiversity (which would constitute a full paradigmatic, third-order change), despite this being an essential component of the EU's green transition.

Suggested Citation

  • Crnčec, Danijel & Penca, Jerneja & Lovec, Marko, 2023. "The COVID-19 pandemic and the EU: From a sustainable energy transition to a green transition?," Energy Policy, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:enepol:v:175:y:2023:i:c:s0301421523000381
    DOI: 10.1016/j.enpol.2023.113453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523000381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harjanne, Atte & Korhonen, Janne M., 2019. "Abandoning the concept of renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 330-340.
    2. Erb, Karl-Heinz & Haberl, Helmut & Plutzar, Christoph, 2012. "Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability," Energy Policy, Elsevier, vol. 47(C), pages 260-269.
    3. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    4. Pedro R. R. Rochedo & Panagiotis Fragkos & Rafael Garaffa & Lilia Caiado Couto & Luiz Bernardo Baptista & Bruno S. L. Cunha & Roberto Schaeffer & Alexandre Szklo, 2021. "Is Green Recovery Enough? Analysing the Impacts of Post-COVID-19 Economic Packages," Energies, MDPI, vol. 14(17), pages 1-19, September.
    5. Frank Schimmelfennig, 2018. "Liberal Intergovernmentalism and the Crises of the European Union," Journal of Common Market Studies, Wiley Blackwell, vol. 56(7), pages 1578-1594, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mišík, Matúš & Nosko, Andrej, 2023. "Post-pandemic lessons for EU energy and climate policy after the Russian invasion of Ukraine: Introduction to a special issue on EU green recovery in the post-Covid-19 period," Energy Policy, Elsevier, vol. 177(C).
    2. Artur Pawłowski & Paweł Rydzewski, 2023. "Challenges and Opportunities for the Energy Sector in the Face of Threats Such as Climate Change and the COVID-19 Pandemic—An International Perspective," Energies, MDPI, vol. 16(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    2. Alexey Cherepovitsyn & Evgeniya Rutenko, 2022. "Strategic Planning of Oil and Gas Companies: The Decarbonization Transition," Energies, MDPI, vol. 15(17), pages 1-26, August.
    3. Yang Shen & Xiuwu Zhang, 2022. "Study on the Impact of Environmental Tax on Industrial Green Transformation," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    4. Norbert Bajkó & Zsolt Fülöp & Kinga Nagyné Pércsi, 2022. "Changes in the Innovation- and Marketing-Habits of Family SMEs in the Foodstuffs Industry, Caused by the Coronavirus Pandemic in Hungary," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    5. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    6. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    7. Wil Burns & Simon Nicholson, 2017. "Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(4), pages 527-534, December.
    8. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    9. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland, 2023. "Modelling emission and land-use impacts of altered bioenergy use in the future energy system," Energy, Elsevier, vol. 265(C).
    10. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    11. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Natalia Duarte Forero & Donovan Arango Barrios & Jorge Duarte Forero, 2019. "Overview of Potential Use of Hydroxyl and Hydrogen as an Alternative Fuel in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 525-534.
    13. Panagiotis Fragkos, 2022. "Decarbonizing the International Shipping and Aviation Sectors," Energies, MDPI, vol. 15(24), pages 1-25, December.
    14. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    15. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    16. Schaffer, Axel & Düvelmeyer, Claudia, 2016. "Regional drivers of on-farm energy production in Bavaria," Energy Policy, Elsevier, vol. 95(C), pages 361-369.
    17. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
    18. Olga Laiza Kupika & Edson Gandiwa & Godwell Nhamo, 2019. "Green economy initiatives in the face of climate change: experiences from the Middle Zambezi Biosphere Reserve, Zimbabwe," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2507-2533, October.
    19. Alexandra Vrînceanu & Ines Grigorescu & Monica Dumitrașcu & Irena Mocanu & Cristina Dumitrică & Dana Micu & Gheorghe Kucsicsa & Bianca Mitrică, 2019. "Impacts of Photovoltaic Farms on the Environment in the Romanian Plain," Energies, MDPI, vol. 12(13), pages 1-18, July.
    20. Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2021. "Parametric study on the effect of inlet and outlet pipe shape on the flow fluctuation characteristics associated with a positive displacement hydraulic turbine," Renewable Energy, Elsevier, vol. 163(C), pages 1046-1062.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:175:y:2023:i:c:s0301421523000381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.