IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v161y2022ics0301421521005905.html
   My bibliography  Save this article

Are households living in green certified buildings consuming less energy? Evidence from Switzerland

Author

Listed:
  • Filippini, Massimo
  • Obrist, Adrian

Abstract

In this paper, we compare the total energy consumption of households living in green certified buildings with households living in conventional buildings based on the example of the Swiss Minergie label. For this purpose, we estimate an econometric total energy demand model using a panel data set comprised of around 1500 households observed over the years 2010–2015. The empirical analysis provides suggestive evidence that households living in green certified buildings save approximately 25% of total energy. The estimated energy savings are lower than predicted by engineering-based bottom-up models that are not considering energy consumption behavioral factors. Nevertheless, our result suggests that savings in energy use and associated emissions of greenhouse gases (and other pollutants) may benefit from energy policy measures such as public information campaigns or subsidies that promote the construction of green certified buildings. Furthermore, since policy scenarios are usually based on ex-ante energy reduction projections, it is important to consider that the energy savings predicted tend, at least for the building sector, to be higher than they actually are. This difference may therefore impact the scenarios and thus the energy policy measures to be implemented.

Suggested Citation

  • Filippini, Massimo & Obrist, Adrian, 2022. "Are households living in green certified buildings consuming less energy? Evidence from Switzerland," Energy Policy, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:enepol:v:161:y:2022:i:c:s0301421521005905
    DOI: 10.1016/j.enpol.2021.112724
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521005905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112724?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Huan & Carrión-Flores, Carmen E., 2017. "An analysis of the ENERGY STAR® program in Alachua County, Florida," Ecological Economics, Elsevier, vol. 131(C), pages 98-108.
    2. Alberini, Anna & Filippini, Massimo, 2011. "Response of residential electricity demand to price: The effect of measurement error," Energy Economics, Elsevier, vol. 33(5), pages 889-895, September.
    3. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, , vol. 32(2), pages 59-80, April.
    4. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    5. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    6. Stefanie Lena Heinzle & Rolf Wüstenhagen, 2012. "Dynamic Adjustment of Eco‐labeling Schemes and Consumer Choice – the Revision of the EU Energy Label as a Missed Opportunity?," Business Strategy and the Environment, Wiley Blackwell, vol. 21(1), pages 60-70, January.
    7. Banfi, Silvia & Farsi, Mehdi & Filippini, Massimo & Jakob, Martin, 2008. "Willingness to pay for energy-saving measures in residential buildings," Energy Economics, Elsevier, vol. 30(2), pages 503-516, March.
    8. Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
    9. Stefan Zundel & Immanuel Stieß, 2011. "Beyond Profitability of Energy-Saving Measures—Attitudes Towards Energy Saving," Journal of Consumer Policy, Springer, vol. 34(1), pages 91-105, March.
    10. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    11. Franz Beyeler & Nick Beglinger & Ursina Roder, 2009. "Minergie: The Swiss Sustainable Building Standard," Innovations: Technology, Governance, Globalization, MIT Press, vol. 4(4), pages 241-244, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Lu & Wu, Shuang & Jiang, Lu & Ding, Bowenpeng & Shi, Xiaonan, 2022. "Do more efficient buildings lead to lower household energy consumption for cooling? Evidence from Guangzhou, China," Energy Policy, Elsevier, vol. 168(C).
    2. Ghosh, Indranil & Jana, Rabin K., 2024. "Clean energy stock price forecasting and response to macroeconomic variables: A novel framework using Facebook's Prophet, NeuralProphet and explainable AI," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    3. Nina Boogen & Massimo Filippini & Adan L. Martinez-Cruz, 2022. "Value of co-benefits from energy saving ventilation systems—Contingent valuations on Swiss home owners," CER-ETH Economics working paper series 22/368, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    4. Chuan Li & Liangrong Song, 2022. "Regional Differences and Spatial Convergence of Green Development in China," Sustainability, MDPI, vol. 14(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Ceolotto & Eleanor Denny, 2021. "Putting a new 'spin' on energy labels: measuring the impact of reframing energy efficiency on tumble dryer choices in a multi-country experiment," Trinity Economics Papers tep1521, Trinity College Dublin, Department of Economics.
    2. Massimo Filippini & Luis Orea, 2014. "Applications of the stochastic frontier approach in Energy Economics," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 35-42.
    3. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    4. Blasch, Julia & Boogen, Nina & Filippini, Massimo & Kumar, Nilkanth, 2017. "Explaining electricity demand and the role of energy and investment literacy on end-use efficiency of Swiss households," Energy Economics, Elsevier, vol. 68(S1), pages 89-102.
    5. Wang, Xia & Ding, Chao & Zhou, Mao & Cai, Weiguang & Ma, Xianrui & Yuan, Jiachen, 2023. "Assessment of space heating consumption efficiency based on a household survey in the hot summer and cold winter climate zone in China," Energy, Elsevier, vol. 274(C).
    6. Dolšak, Janez & Hrovatin, Nevenka & Zorić, Jelena, 2022. "Estimating the efficiency in overall energy consumption: Evidence from Slovenian household-level data," Energy Economics, Elsevier, vol. 114(C).
    7. Yu, Lu & Wu, Shuang & Jiang, Lu & Ding, Bowenpeng & Shi, Xiaonan, 2022. "Do more efficient buildings lead to lower household energy consumption for cooling? Evidence from Guangzhou, China," Energy Policy, Elsevier, vol. 168(C).
    8. Tajudeen, Ibrahim A., 2021. "The underlying drivers of economy-wide energy efficiency and asymmetric energy price responses," Energy Economics, Elsevier, vol. 98(C).
    9. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
    10. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    11. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    12. Zhang, Lin, 2017. "Correcting the uneven burden sharing of emission reduction across provinces in China," Energy Economics, Elsevier, vol. 64(C), pages 335-345.
    13. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    14. Gale A. Boyd & Jonathan M. Lee, 2020. "Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry," The Energy Journal, , vol. 41(3), pages 39-62, May.
    15. Schleich, Joachim & Durand, Antoine & Brugger, Heike, 2021. "How effective are EU minimum energy performance standards and energy labels for cold appliances?," Energy Policy, Elsevier, vol. 149(C).
    16. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    17. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    18. Gale Boyd & Matt Doolin, 2020. "The Energy Efficiency Gap and Energy Price Responsiveness in Food Processing," Working Papers 20-18, Center for Economic Studies, U.S. Census Bureau.
    19. Olsthoorn, Mark & Schleich, Joachim & Guetlein, Marie-Charlotte & Durand, Antoine & Faure, Corinne, 2023. "Beyond energy efficiency: Do consumers care about life-cycle properties of household appliances?," Energy Policy, Elsevier, vol. 174(C).
    20. Romero-Jordán, Desiderio & del Río, Pablo, 2022. "Analysing the drivers of the efficiency of households in electricity consumption," Energy Policy, Elsevier, vol. 164(C).

    More about this item

    Keywords

    Residential energy demand; Energy efficiency; Green building certification; Environmental policy;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:161:y:2022:i:c:s0301421521005905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.