IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v156y2021ics0301421521002998.html
   My bibliography  Save this article

The soft path revisited: Policies that drive decentralization of electric power generation in the contiguous U.S

Author

Listed:
  • Kahsar, Rudy

Abstract

New renewable energy generators such as solar photovoltaics and wind turbines have the ability to be sited in a more decentralized manner than conventional generators such as coal, nuclear, hydroelectric, or natural gas plants. However, at the commercial scale, these new renewable generators are often built in existing generation corridors and are not necessarily more decentralized. This paper analyzes the degree of centralization of generators in the contiguous U.S. between 2001 and 2018 and identifies the state level policies that may be driving differences in the degree of centralization between states and regions. The results show that community solar programs such as those in North Carolina and Minnesota have driven greater decentralization of generation while community choice aggregation programs such as those in California have not led to greater decentralization of generation. The degree of centralization of generation assets has implications for sociotechnical systems, communities, energy security, and resiliency against manmade and natural disasters.

Suggested Citation

  • Kahsar, Rudy, 2021. "The soft path revisited: Policies that drive decentralization of electric power generation in the contiguous U.S," Energy Policy, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:enepol:v:156:y:2021:i:c:s0301421521002998
    DOI: 10.1016/j.enpol.2021.112429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521002998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Grillitsch & Teis Hansen, 2019. "Green industry development in different types of regions," European Planning Studies, Taylor & Francis Journals, vol. 27(11), pages 2163-2183, November.
    2. Suomalainen, Kiti & Wang, Vincent & Sharp, Basil, 2017. "Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level," Renewable Energy, Elsevier, vol. 111(C), pages 463-475.
    3. Peters, Michael & Fudge, Shane & High-Pippert, Angela & Carragher, Vincent & Hoffman, Steven M., 2018. "Community solar initiatives in the United States of America: Comparisons with – and lessons for – the UK and other European countries," Energy Policy, Elsevier, vol. 121(C), pages 355-364.
    4. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    5. Hess, David J. & Lee, Dasom, 2020. "Energy decentralization in California and New York: Conflicts in the politics of shared solar and community choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Arthur Getis & J. Keith Ord, 2010. "The Analysis of Spatial Association by Use of Distance Statistics," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 127-145, Springer.
    7. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    8. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas Mukisa & Ramon Zamora & Tek Tjing Lie, 2022. "Energy Business Initiatives for Grid-Connected Solar Photovoltaic Systems: An Overview," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    2. Pia Szichta & Ingela Tietze, 2020. "Sharing Economy in der Elektrizitätswirtschaft: Treiber und Hemmnisse [Title sharing economy in the electricity sector: drivers and barriers]," Sustainability Nexus Forum, Springer, vol. 28(3), pages 109-125, December.
    3. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).
    4. Barry Arnold, 2015. "On Zenga and Bonferroni curves," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 25-30, April.
    5. Vanesa Jorda & Jos Mar a Sarabia & Markus J ntti, 2020. "Estimation of Income Inequality from Grouped Data," LIS Working papers 804, LIS Cross-National Data Center in Luxembourg.
    6. Ziqing Dong & Yves Tillé & Giovanni M. Giorgi & Alessio Guandalini, 2021. "Linearization and variance estimation of the Bonferroni inequality index," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1008-1029, July.
    7. Sarabia, José María, 2008. "A general definition of the Leimkuhler curve," Journal of Informetrics, Elsevier, vol. 2(2), pages 156-163.
    8. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    9. Mehmet Ronael & Tüzin Baycan, 2022. "Place-based factors affecting COVID-19 incidences in Turkey," Asia-Pacific Journal of Regional Science, Springer, vol. 6(3), pages 1053-1086, October.
    10. Carmen Puerta & Ana Urrutia, 2012. "Lower and upper tail concern and the rank dependent social evaluation functions," Economics Bulletin, AccessEcon, vol. 32(4), pages 3250-3259.
    11. Ravallion, Martin & Chen, Shaohua, 2003. "Measuring pro-poor growth," Economics Letters, Elsevier, vol. 78(1), pages 93-99, January.
    12. Yu Zhang & Jiayu Wu & Chunyao Zhou & Qingyu Zhang, 2019. "Installation Planning in Regional Thermal Power Industry for Emissions Reduction Based on an Emissions Inventory," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    13. Masato Okamoto, 2014. "Interpolating the Lorenz Curve: Methods to Preserve Shape and Remain Consistent with the Concentration Curves for Components," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(2), pages 349-384, June.
    14. Felipe Santos‐Marquez & Carlos Mendez, 2021. "Regional convergence, spatial scale, and spatial dependence: Evidence from homicides and personal injuries in Colombia 2010–2018," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(4), pages 1162-1184, August.
    15. Jianwei Qi & Yayan Lu & Fang Han & Xuankai Ma & Zhaoping Yang, 2022. "Spatial Distribution Characteristics of the Rural Tourism Villages in the Qinghai-Tibetan Plateau and Its Influencing Factors," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    16. Zhu, Yongjun & Yan, Erjia, 2017. "Examining academic ranking and inequality in library and information science through faculty hiring networks," Journal of Informetrics, Elsevier, vol. 11(2), pages 641-654.
    17. Hou, Yali & Wang, Qunwei & Tan, Tao, 2023. "An ensemble learning framework for rooftop photovoltaic project site selection," Energy, Elsevier, vol. 285(C).
    18. Losacker, Sebastian, 2022. "‘License to green’: Regional patent licensing networks and green technology diffusion in China," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    19. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2013. "Comparison of concentration for several families of income distributions," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1036-1045.
    20. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:156:y:2021:i:c:s0301421521002998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.