IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v148y2021ipbs030142152030690x.html
   My bibliography  Save this article

Emissions of particulate matter due to Marcellus Shale gas development in Pennsylvania: Mapping the implications

Author

Listed:
  • Banan, Zoya
  • Gernand, Jeremy M.

Abstract

Over the past decade, the shale gas boom has led to increasing public concerns regarding communities' exposure to air pollutants from shale gas development resulting in concentrations higher than the EPA's National Ambient Air Quality Standards. This study investigates the sufficiency of current policy in Pennsylvania to protect people from exposure to fine particulate matter (PM2.5) emissions from such development. We used a Gaussian plume model to simulate PM2.5 concentrations over the Marcellus shale region of Pennsylvania, and using census block data, we estimated the potential number of people who experienced exceedance of the PM2.5 standard between 2005 and 2017. Results demonstrate that these emissions could increase the number of exceedances by more than 36,000 persons in a single year which is almost 1% of the Marcellus shale regional population in Pennsylvania. This number has largely been proportional to the overall number of developed wells, but development histories show that similar levels of development could occur with reduced population exposure. Setback policy is shown to be an effective method to reduce exposure exceedances, but results suggest that it should be revised based on the number of wells per wellpad as well as the local conditions to further limit air quality impacts.

Suggested Citation

  • Banan, Zoya & Gernand, Jeremy M., 2021. "Emissions of particulate matter due to Marcellus Shale gas development in Pennsylvania: Mapping the implications," Energy Policy, Elsevier, vol. 148(PB).
  • Handle: RePEc:eee:enepol:v:148:y:2021:i:pb:s030142152030690x
    DOI: 10.1016/j.enpol.2020.111979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152030690X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaramillo, Paulina & Muller, Nicholas Z., 2016. "Air pollution emissions and damages from energy production in the U.S.: 2002–2011," Energy Policy, Elsevier, vol. 90(C), pages 202-211.
    2. Fry, Matthew, 2013. "Urban gas drilling and distance ordinances in the Texas Barnett Shale," Energy Policy, Elsevier, vol. 62(C), pages 79-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Wente & Sun, Yuping & Zhang, Xiaowei & Lu, Jialiang & Liu, Hualin & Li, Qiaojing & Mu, Ying, 2023. "An ensemble transfer learning strategy for production prediction of shale gas wells," Energy, Elsevier, vol. 275(C).
    2. Arriet, Andrea & Matis, Timothy I. & Feijoo, Felipe, 2023. "Water taxation strategies for the natural gas sector in North America: Facing a rising water crisis," Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shawhan, Daniel L. & Picciano, Paul D., 2019. "Costs and benefits of saving unprofitable generators: A simulation case study for US coal and nuclear power plants," Energy Policy, Elsevier, vol. 124(C), pages 383-400.
    2. Fry, Matthew & Brannstrom, Christian, 2017. "Emergent patterns and processes in urban hydrocarbon governance," Energy Policy, Elsevier, vol. 111(C), pages 383-393.
    3. Ericson, Sean J. & Kaffine, Daniel T. & Maniloff, Peter, 2020. "Costs of increasing oil and gas setbacks are initially modest but rise sharply," Energy Policy, Elsevier, vol. 146(C).
    4. Xinming Du, 2023. "Symptom or Culprit? Social Media, Air Pollution, and Violence," CESifo Working Paper Series 10296, CESifo.
    5. Matthew Fry & Christian Brannstrom & Trey Murphy, 2015. "How Dallas became frack free: hydrocarbon governance under neoliberalism," Environment and Planning A, , vol. 47(12), pages 2591-2608, December.
    6. Daniel Leppert, 2023. "“No fences make bad neighbors” but markets make better ones: cap-and-trade reduces cross-border SO2 in a natural experiment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(3), pages 407-433, July.
    7. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    8. Rıdvan Karacan & Shahriyar Mukhtarov & İsmail Barış & Aykut İşleyen & Mehmet Emin Yardımcı, 2021. "The Impact of Oil Price on Transition toward Renewable Energy Consumption? Evidence from Russia," Energies, MDPI, vol. 14(10), pages 1-14, May.
    9. Yang, Xue & Wang, Shaojian & Zhang, Wenzhong & Li, Jiaming & Zou, Yafeng, 2016. "Impacts of energy consumption, energy structure, and treatment technology on SO2 emissions: A multi-scale LMDI decomposition analysis in China," Applied Energy, Elsevier, vol. 184(C), pages 714-726.
    10. Zhang, Zhenhua & Zhang, Yunpeng & Zhao, Mingcheng & Muttarak, Raya & Feng, Yanchao, 2023. "What is the global causality among renewable energy consumption, financial development, and public health? New perspective of mineral energy substitution," Resources Policy, Elsevier, vol. 85(PA).
    11. Ma Ying & Gashaw Awoke Tikuye & He Shan, 2021. "Impacts of Firm Performance on Corporate Social Responsibility Practices: The Mediation Role of Corporate Governance in Ethiopia Corporate Business," Sustainability, MDPI, vol. 13(17), pages 1-21, August.
    12. Daniel Raimi & Emily Grubert & Jake Higdon & Gilbert Metcalf & Sophie Pesek & Devyani Singh, 2023. "The Fiscal Implications of the US Transition Away from Fossil Fuels," Review of Environmental Economics and Policy, University of Chicago Press, vol. 17(2), pages 295-315.
    13. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    14. Andrzej Sitka & Wiesław Jodkowski & Piotr Szulc & Daniel Smykowski & Bogusław Szumiło, 2021. "Study of the Properties and Particulate Matter Content of the Gas from the Innovative Pilot-Scale Gasification Installation with Integrated Ceramic Filter," Energies, MDPI, vol. 14(22), pages 1-11, November.
    15. Jha, Akshaya & Muller, Nicholas Z., 2018. "The local air pollution cost of coal storage and handling: Evidence from U.S. power plants," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 360-396.
    16. Raff, Zach & Meyer, Andrew & Walter, Jason M., 2022. "Political differences in air pollution abatement under the Clean Air Act," Journal of Public Economics, Elsevier, vol. 212(C).
    17. Ahamadreza Tahsiri & Mohammadjavad Arab, 2023. "A system dynamics model for a holistic analysis of urban NOx emissions: a case study of Tehran, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7299-7323, July.
    18. Heqian Zhao & Huaizhong Shi & Zhongwei Huang & Zhenliang Chen & Ziang Gu & Fei Gao, 2022. "Mechanism of Cuttings Removing at the Bottom Hole by Pulsed Jet," Energies, MDPI, vol. 15(9), pages 1-21, May.
    19. Anderson, Jeffrey J. & Rode, David & Zhai, Haibo & Fischbeck, Paul, 2021. "Transitioning to a carbon-constrained world: Reductions in coal-fired power plant emissions through unit-specific, least-cost mitigation frontiers," Applied Energy, Elsevier, vol. 288(C).
    20. Jeffrey Rous & Vicki Oppenheim & Myungsup Kim & Matthew Fry & Chetan Tiwari & Murray Rice, 2020. "Evaluating determinants of shale gas well locations in an urban setting," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 65(3), pages 645-671, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:148:y:2021:i:pb:s030142152030690x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.