IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v139y2020ics0301421520300628.html
   My bibliography  Save this article

Embracing uncertainty in building energy efficiency policy: A case study of a building energy standard

Author

Listed:
  • Goulden, Shula
  • Erell, Evyatar
  • Pearlmutter, David
  • Garb, Yaakov

Abstract

Quantified goals for reducing energy consumption in buildings play a significant role in national and international energy policy. Calculations of potential energy savings from different interventions may be unreliable due to various types of uncertainty, resulting in a performance gap between predictions and actual energy consumption. Yet building energy policy continues to rely heavily on apparently robust calculations of energy savings, raising the question of why and how the policy process tolerates uncertainty and inaccuracy when quantification is its central logic. We describe a case study of the development of a new mandatory building energy standard, in which there is a lack of consensus on the energy it would save. We found that when this uncertainty was brought to light, the policy process raised other, unquantified logics in favour of energy efficiency measures. Using literature on calculation and expertise, we discuss how quantification is used in policy-making and how uncertainties are repressed, enabling the energy performance gap to persist. We conclude that broader awareness of the modes in which quantitative and other logics are used in energy policy, and a reframing of the types of energy savings to be made, may serve policy-making better than an illusion of calculative certainty.

Suggested Citation

  • Goulden, Shula & Erell, Evyatar & Pearlmutter, David & Garb, Yaakov, 2020. "Embracing uncertainty in building energy efficiency policy: A case study of a building energy standard," Energy Policy, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:enepol:v:139:y:2020:i:c:s0301421520300628
    DOI: 10.1016/j.enpol.2020.111303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520300628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    2. Desmet, Klaus & Rossi-Hansberg, Esteban, 2015. "On the spatial economic impact of global warming," Journal of Urban Economics, Elsevier, vol. 88(C), pages 16-37.
    3. Michel Callon & Fabian Muniesa, 2005. "Economic markets as calculative collective devices," Post-Print halshs-00087477, HAL.
    4. Galvin, Ray & Sunikka-Blank, Minna, 2016. "Quantification of (p)rebound effects in retrofit policies – Why does it matter?," Energy, Elsevier, vol. 95(C), pages 415-424.
    5. Shove, Elizabeth, 1998. "Gaps, barriers and conceptual chasms: theories of technology transfer and energy in buildings," Energy Policy, Elsevier, vol. 26(15), pages 1105-1112, December.
    6. Amecke, Hermann, 2012. "The impact of energy performance certificates: A survey of German home owners," Energy Policy, Elsevier, vol. 46(C), pages 4-14.
    7. Friedman, Chanoch & Becker, Nir & Erell, Evyatar, 2014. "Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis," Energy, Elsevier, vol. 77(C), pages 183-193.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmerling, Johannes & Shayegh, Soheil & Dasgupta, Shouro, 2020. "Inequality and Growth Impacts from Climate Change—Insights from South Africa," RFF Working Paper Series 20-10, Resources for the Future.
    2. Murphy, Lorraine, 2014. "The influence of the Energy Performance Certificate: The Dutch case," Energy Policy, Elsevier, vol. 67(C), pages 664-672.
    3. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. Joanne P. Baron, 2018. "Making money in Mesoamerica: Currency production and procurement in the Classic Maya financial system," Economic Anthropology, Wiley Blackwell, vol. 5(2), pages 210-223, June.
    6. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    7. Feser, Daniel & Runst, Petrik, 2016. "Energy efficiency consultants as change agents? Examining the reasons for EECs’ limited success," Energy Policy, Elsevier, vol. 98(C), pages 309-317.
    8. Stefano Giglio & Bryan Kelly & Johannes Stroebel, 2021. "Climate Finance," Annual Review of Financial Economics, Annual Reviews, vol. 13(1), pages 15-36, November.
    9. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    10. David Gibbs & Kirstie O'Neill, 2014. "Rethinking Sociotechnical Transitions and Green Entrepreneurship: The Potential for Transformative Change in the Green Building Sector," Environment and Planning A, , vol. 46(5), pages 1088-1107, May.
    11. Möllering, Guido, 2009. "Market constitution analysis: A new framework applied to solar power technology markets," MPIfG Working Paper 09/7, Max Planck Institute for the Study of Societies.
    12. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    13. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    14. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    15. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    16. van Alphen, Klaas & Hekkert, Marko P. & van Sark, Wilfried G.J.H.M., 2008. "Renewable energy technologies in the Maldives--Realizing the potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 162-180, January.
    17. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    18. Mats Wilhelmsson, 2019. "Energy Performance Certificates and Its Capitalization in Housing Values in Sweden," Sustainability, MDPI, vol. 11(21), pages 1-16, November.
    19. Dodoo, Ambrose & Gustavsson, Leif & Tettey, Uniben Y.A., 2017. "Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building," Energy, Elsevier, vol. 135(C), pages 563-576.
    20. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:139:y:2020:i:c:s0301421520300628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.