IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v132y2019icp1191-1205.html
   My bibliography  Save this article

Analysis of industry-air quality control in ecologically fragile coal-dependent cities by an uncertain Gaussian diffusion-Hurwicz criterion model

Author

Listed:
  • Zhu, Ying
  • Yan, Xiaxia
  • Chen, Cong
  • Li, Yongping
  • Huang, Guohe
  • Li, Yexin

Abstract

In this study, an uncertain Gaussian diffusion-Hurwicz criterion (UGHC) model was developed for supporting analysis of industry-air quality control (IAC) system in ecologically fragile coal-dependent cities. Results of production reduction, excess emission amounts, benefits of different industries, penalties and system benefits under various credibility satisfaction levels (α levels and γ levels), wind velocities and optimism levels (λ levels) are generated. Results reveal that (a) whole industrial production would reduce for satisfying the environmental regulation under various credibility satisfaction levels. For example, production reduction amounts of cement manufacturing industry (CMI) would be [175, 185] × 103 ton/year, when γ varied from 0.6 to 0.9 (h = 1, t = 1). (b) Industrial reduction and excess pollution amounts would reduce with increasing of wind velocities. (c) On the process of optimizing the industrial scale and structure, fuzzy uncertainties from human judgments (e.g., air quality standards) have great influence on the satisfaction and violation risk of the system. The obtained results also illustrate that UGHC-IAC model can provide an effective linkage between the industrial production and pollution emission, which can help managers to adjust the current industrial structure with sustainable manner.

Suggested Citation

  • Zhu, Ying & Yan, Xiaxia & Chen, Cong & Li, Yongping & Huang, Guohe & Li, Yexin, 2019. "Analysis of industry-air quality control in ecologically fragile coal-dependent cities by an uncertain Gaussian diffusion-Hurwicz criterion model," Energy Policy, Elsevier, vol. 132(C), pages 1191-1205.
  • Handle: RePEc:eee:enepol:v:132:y:2019:i:c:p:1191-1205
    DOI: 10.1016/j.enpol.2019.06.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519304410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.06.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laldjebaev, Murodbek & Morreale, Stephen J. & Sovacool, Benjamin K. & Kassam, Karim-Aly S., 2018. "Rethinking energy security and services in practice: National vulnerability and three energy pathways in Tajikistan," Energy Policy, Elsevier, vol. 114(C), pages 39-50.
    2. Madlener, Reinhard & Kumbaroglu, Gurkan & Ediger, Volkan S., 2005. "Modeling technology adoption as an irreversible investment under uncertainty: the case of the Turkish electricity supply industry," Energy Economics, Elsevier, vol. 27(1), pages 139-163, January.
    3. Li, Y.P. & Liu, J. & Huang, G.H., 2014. "A hybrid fuzzy-stochastic programming method for water trading within an agricultural system," Agricultural Systems, Elsevier, vol. 123(C), pages 71-83.
    4. Li, Ying & Chiu, Yung-ho & Lu, Liang Chun, 2018. "Energy and AQI performance of 31 cities in China," Energy Policy, Elsevier, vol. 122(C), pages 194-202.
    5. Li, Y.P. & Huang, G.H. & Guo, P. & Yang, Z.F. & Nie, S.L., 2010. "A dual-interval vertex analysis method and its application to environmental decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 200(2), pages 536-550, January.
    6. Marais, Lochner & McKenzie, Fiona Haslam & Deacon, Leith & Nel, Etienne & Rooyen, Deidre van & Cloete, Jan, 2018. "The changing nature of mining towns: Reflections from Australia, Canada and South Africa," Land Use Policy, Elsevier, vol. 76(C), pages 779-788.
    7. Liu, Zhijian & Xu, Wei & Zhai, Xue & Qian, Cheng & Chen, Xi, 2017. "Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas," Renewable Energy, Elsevier, vol. 101(C), pages 1131-1140.
    8. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    9. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2018. "Coal miners’ livelihood vulnerability to economic shock: Multi-criteria assessment and policy implications," Energy Policy, Elsevier, vol. 114(C), pages 301-314.
    10. Jefferson, Michael, 2018. "Renewable and low carbon technologies policy," Energy Policy, Elsevier, vol. 123(C), pages 367-372.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2020. "Understanding coal miners’ livelihood vulnerability to declining coal demand: Negative impact and coping strategies," Energy Policy, Elsevier, vol. 138(C).
    2. Zhilong He & Tao Wang & Xiaolin Wang & Xueyuan Peng & Ziwen Xing, 2018. "Experimental Investigation into the Effect of Oil Injection on the Performance of a Variable Speed Twin-Screw Compressor," Energies, MDPI, vol. 11(6), pages 1-14, May.
    3. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    4. Qi, Ye & Stern, Nicholas & Wu, Tong & Lu, Jiaqi & Green, Fergus, 2016. "China's post-coal growth," LSE Research Online Documents on Economics 67503, London School of Economics and Political Science, LSE Library.
    5. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    6. Rasoulinezhad, Ehsan & Sung, Jinsok & Talipova, Amina & Taghizadeh-Hesary, Farhad, 2022. "Analyzing energy trade policy in Central Asia using the intercountry trade force approach," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 441-454.
    7. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    8. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    9. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    10. Reinhard Madlener & Carlos Henggeler Antunes & Luis C. Dias, 2006. "Multi-Criteria versus Data Envelopment Analysis for Assessing the Performance of Biogas Plants," CEPE Working paper series 06-49, CEPE Center for Energy Policy and Economics, ETH Zurich.
    11. Ji Li & Yuanwei Liu & Ruixue Zhang & Zhijian Liu & Wei Xu & Biao Qiao & Xiaomei Feng, 2018. "Load Distribution of Semi-Central Evaporative Cooling Air-Conditioning System Based on the TRNSYS Platform," Energies, MDPI, vol. 11(5), pages 1-15, May.
    12. Zhang, S.Q. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Yang, X., 2023. "Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan," Energy, Elsevier, vol. 266(C).
    13. Pei, Wansheng & Zhang, Mingyi & Li, Shuangyang & Lai, Yuanming & Dong, Yuanhong & Jin, Long, 2019. "Laboratory investigation of the efficiency optimization of an inclined two-phase closed thermosyphon in ambient cool energy utilization," Renewable Energy, Elsevier, vol. 133(C), pages 1178-1187.
    14. Cruz-Peragón, F. & Gómez-de la Cruz, F.J. & Palomar-Carnicero, J.M. & López-García, R., 2022. "Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger," Renewable Energy, Elsevier, vol. 195(C), pages 381-394.
    15. Reinhard Madlener & Stefan Vögtli, 2006. "Diffusion of bioenergy in urban areas: socio-economic analysis of the planned Swiss wood-fired cogeneration plant in Basel," CEPE Working paper series 06-53, CEPE Center for Energy Policy and Economics, ETH Zurich.
    16. Moore, K.R. & Moradi, S. & Doyle, K. & Sydd, O. & Amaral, V. & Bodin, J. & Brito-Parada, P.R. & Dudley, F. & Fitzpatrick, R. & Foster, P. & Goettmann, F. & Roberts, D. & Roethe, R. & Sairinen, R. & Sa, 2021. "Sustainability of switch on-switch off (SOSO) mining: Human resource development tailored to technological solutions," Resources Policy, Elsevier, vol. 73(C).
    17. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    18. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    19. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    20. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:132:y:2019:i:c:p:1191-1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.