IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v113y2018icp28-40.html
   My bibliography  Save this article

Do tidal stream energy projects offer more value than offshore wind farms? A case study in the United Kingdom

Author

Listed:
  • Lamy, Julian V.
  • Azevedo, Inês L.

Abstract

Marine-based renewable energy could help the United Kingdom (UK) move towards a more sustainable and low-carbon energy system. Today, offshore wind is the prevailing marine renewable technology but there is growing progress towards developing others, such as tidal stream energy (TSE) turbines which capture kinetic energy from tidal currents. Using historical operations data from 18 wind farms and simulated generation data for two TSE sites in the UK, we estimate that TSE projects offer about $10/MWh more in net social benefits than offshore wind projects. This estimate includes the value of energy generated, value of reduced marginal CO2 emissions, cost of visual changes to the landscape, and cost of energy generation forecast errors. However, relative to offshore wind, the increased cost of TSE projects far outweighs the increased social benefits. The levelized cost of energy (LCOE) of TSE projects is expected to be about $74/MWh to $330/MWh higher than offshore wind projects through 2050. Only with optimistic LCOE projections, small TSE projects (20MW) may be competitive (when including increased net social benefits) with small offshore wind projects by 2020.

Suggested Citation

  • Lamy, Julian V. & Azevedo, Inês L., 2018. "Do tidal stream energy projects offer more value than offshore wind farms? A case study in the United Kingdom," Energy Policy, Elsevier, vol. 113(C), pages 28-40.
  • Handle: RePEc:eee:enepol:v:113:y:2018:i:c:p:28-40
    DOI: 10.1016/j.enpol.2017.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517306900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ek, Kristina & Persson, Lars, 2014. "Wind farms — Where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden," Ecological Economics, Elsevier, vol. 105(C), pages 193-203.
    2. Neill, Simon P. & Jordan, James R. & Couch, Scott J., 2012. "Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks," Renewable Energy, Elsevier, vol. 37(1), pages 387-397.
    3. Mauch, Brandon & Carvalho, Pedro M.S. & Apt, Jay, 2012. "Can a wind farm with CAES survive in the day-ahead market?," Energy Policy, Elsevier, vol. 48(C), pages 584-593.
    4. Lamy, Julian V. & Jaramillo, Paulina & Azevedo, Inês L. & Wiser, Ryan, 2016. "Should we build wind farms close to load or invest in transmission to access better wind resources in remote areas? A case study in the MISO region," Energy Policy, Elsevier, vol. 96(C), pages 341-350.
    5. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    6. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    7. Krokoszinski, H.-J., 2003. "Efficiency and effectiveness of wind farms—keys to cost optimized operation and maintenance," Renewable Energy, Elsevier, vol. 28(14), pages 2165-2178.
    8. Graziano, Marcello & Lecca, Patrizio & Musso, Marta, 2017. "Historic paths and future expectations: The macroeconomic impacts of the offshore wind technologies in the UK," Energy Policy, Elsevier, vol. 108(C), pages 715-730.
    9. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    10. Hawkes, A.D., 2014. "Long-run marginal CO2 emissions factors in national electricity systems," Applied Energy, Elsevier, vol. 125(C), pages 197-205.
    11. Bettle, R. & Pout, C.H. & Hitchin, E.R., 2006. "Interactions between electricity-saving measures and carbon emissions from power generation in England and Wales," Energy Policy, Elsevier, vol. 34(18), pages 3434-3446, December.
    12. Dimitropoulos, Alexandros & Kontoleon, Andreas, 2009. "Assessing the determinants of local acceptability of wind-farm investment: A choice experiment in the Greek Aegean Islands," Energy Policy, Elsevier, vol. 37(5), pages 1842-1854, May.
    13. Blunden, L.S. & Bahaj, A.S., 2006. "Initial evaluation of tidal stream energy resources at Portland Bill, UK," Renewable Energy, Elsevier, vol. 31(2), pages 121-132.
    14. Martin D. Heintzelman & Carrie M. Tuttle, 2012. "Values in the Wind: A Hedonic Analysis of Wind Power Facilities," Land Economics, University of Wisconsin Press, vol. 88(3), pages 571-588.
    15. Wolsink, Maarten, 2000. "Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support," Renewable Energy, Elsevier, vol. 21(1), pages 49-64.
    16. Sovacool, Benjamin K., 2009. "The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse?," Utilities Policy, Elsevier, vol. 17(3-4), pages 288-296, September.
    17. Hawkes, A.D., 2010. "Estimating marginal CO2 emissions rates for national electricity systems," Energy Policy, Elsevier, vol. 38(10), pages 5977-5987, October.
    18. Johnstone, C.M. & Pratt, D. & Clarke, J.A. & Grant, A.D., 2013. "A techno-economic analysis of tidal energy technology," Renewable Energy, Elsevier, vol. 49(C), pages 101-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Topper, Mathew B.R. & Olson, Sterling S. & Roberts, Jesse D., 2021. "On the benefits of negative hydrodynamic interactions in small tidal energy arrays," Applied Energy, Elsevier, vol. 297(C).
    2. Yi Su & Yueqi Yu, 2019. "Effects of Technological Innovation Network Embeddedness on the Sustainable Development Capability of New Energy Enterprises," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    3. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    5. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Pan, Zhen & Xia, Weiyi, 2024. "A review of tidal current power generation farm planning: Methodologies, characteristics and challenges," Renewable Energy, Elsevier, vol. 220(C).
    6. Zhang, Jisheng & Lin, Xiangfeng & Wang, Risheng & Guo, Yakun & Zhang, Can & Zhang, Yuquan, 2020. "Flow structures in wake of a pile-supported horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 2321-2334.
    7. Rodrigues, N. & Pintassilgo, P. & Calhau, F. & González-Gorbeña, E. & Pacheco, A., 2021. "Cost-benefit analysis of tidal energy production in a coastal lagoon: The case of Ria Formosa – Portugal," Energy, Elsevier, vol. 229(C).
    8. Yang, Zhixue & Ren, Zhouyang & Li, Zhenwen & Xu, Yan & Li, Hui & Li, Wenyuan & Hu, Xiuqiong, 2022. "A comprehensive analysis method for levelized cost of energy in tidal current power generation farms," Renewable Energy, Elsevier, vol. 182(C), pages 982-991.
    9. Navratil, J. & Picha, K. & Buchecker, M. & Martinat, S. & Svec, R. & Brezinova, M. & Knotek, J., 2019. "Visitors’ preferences of renewable energy options in “green” hotels," Renewable Energy, Elsevier, vol. 138(C), pages 1065-1077.
    10. Dai, Juchuan & Yang, Xin & Wen, Li, 2018. "Development of wind power industry in China: A comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 156-164.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    2. Filippo Beltrami & Fulvio Fontini & Monica Giulietti & Luigi Grossi, 2022. "The Zonal and Seasonal CO2 Marginal Emissions Factors for the Italian Power Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 381-411, October.
    3. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    4. Lauren Knapp & Jacob Ladenburg, 2015. "How Spatial Relationships Influence Economic Preferences for Wind Power—A Review," Energies, MDPI, vol. 8(6), pages 1-25, June.
    5. Zaunbrecher, Barbara S. & Linzenich, Anika & Ziefle, Martina, 2017. "A mast is a mast is a mast…? Comparison of preferences for location-scenarios of electricity pylons and wind power plants using conjoint analysis," Energy Policy, Elsevier, vol. 105(C), pages 429-439.
    6. Pimm, Andrew J. & Palczewski, Jan & Barbour, Edward R. & Cockerill, Tim T., 2021. "Using electricity storage to reduce greenhouse gas emissions," Applied Energy, Elsevier, vol. 282(PA).
    7. Langer, Katharina & Decker, Thomas & Menrad, Klaus, 2017. "Public participation in wind energy projects located in Germany: Which form of participation is the key to acceptance?," Renewable Energy, Elsevier, vol. 112(C), pages 63-73.
    8. Brennan, Noreen & van Rensburg, Thomas M., 2020. "Public preferences for wind farms involving electricity trade and citizen engagement in Ireland," Energy Policy, Elsevier, vol. 147(C).
    9. Brennan, Noreen & Van Rensburg, Thomas M, 2016. "Wind farm externalities and public preferences for community consultation in Ireland: A discrete choice experiments approach," Energy Policy, Elsevier, vol. 94(C), pages 355-365.
    10. Maria De Salvo & Sandra Notaro & Giuseppe Cucuzza & Laura Giuffrida & Giovanni Signorello, 2021. "Protecting the Local Landscape or Reducing Greenhouse Gas Emissions? A Study on Social Acceptance and Preferences towards the Installation of a Wind Farm," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    11. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    12. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Wind power externalities: A meta-analysis," Ecological Economics, Elsevier, vol. 127(C), pages 23-36.
    13. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    14. Simona Bigerna & Paolo Polinori, 2015. "Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
    15. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    16. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    17. van Putten, Marloes & Lijesen, Mark & Özel, Tanju & Vink, Nancy & Wevers, Harm, 2014. "Valuing the preferences for micro-generation of renewables by househoulds," Energy, Elsevier, vol. 71(C), pages 596-604.
    18. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    19. Cathrine Ulla Jensen & Toke Emil Panduro & Thomas Hedemark Lundhede, 2014. "The Vindication of Don Quixote: The Impact of Noise and Visual Pollution from Wind Turbines," Land Economics, University of Wisconsin Press, vol. 90(4), pages 668-682.
    20. Baxter, Jamie & Morzaria, Rakhee & Hirsch, Rachel, 2013. "A case-control study of support/opposition to wind turbines: Perceptions of health risk, economic benefits, and community conflict," Energy Policy, Elsevier, vol. 61(C), pages 931-943.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:113:y:2018:i:c:p:28-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.