IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v110y2017icp31-39.html
   My bibliography  Save this article

China's Green Lights Program: A review and assessment

Author

Listed:
  • Guo, Fei
  • Pachauri, Shonali

Abstract

Lighting accounts for 10–13% of China's electricity consumption. Triggered by the nationwide power shortage of the mid-1990s, the Chinese government launched its Green Lights Program in 1996. Since then, this program has been continuously highlighted in the nation's 9th–12th Five-Year Plans (1996–2015). This paper presents a review and assessment of this program during the past two decades. Based on available data, the achievements along with the implementation of this program are assessed by examining a set of indicators of electricity savings, consumer savings, market penetration, product quality, and production capacity expansion. The success of this programs can be attributed to several factors: 1) strong and sustained government commitment; 2) prioritized policy focus by program stages; 3) extensive efforts on product quality control; 4) a close symbiosis of energy efficiency policies with industrial development policies; and 5) the implementation of various incentive schemes. Nonetheless, several challenges are evident that the program needs to address in its next phase. These include: 1) promoting the use of efficient lighting products in rural China; 2) emphasizing the overall efficacy of lighting fixtures rather than focusing only on bulb efficacy; and 3) promoting the healthy development of an emerging semiconductor lighting industry in the nation.

Suggested Citation

  • Guo, Fei & Pachauri, Shonali, 2017. "China's Green Lights Program: A review and assessment," Energy Policy, Elsevier, vol. 110(C), pages 31-39.
  • Handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:31-39
    DOI: 10.1016/j.enpol.2017.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517304962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min, Guan Fu & Mills, Evan & Zhang, Qin, 1997. "Energy efficient lighting in China : Problems and prospects," Energy Policy, Elsevier, vol. 25(1), pages 77-83, January.
    2. Aman, M.M. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A., 2013. "Analysis of the performance of domestic lighting lamps," Energy Policy, Elsevier, vol. 52(C), pages 482-500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for pricing policies in a duopolistic supply chain considering energy productivity, industrial rebound effect, and government policies," Energy, Elsevier, vol. 167(C), pages 92-105.
    2. Kan Wang & Li Lei & Shuai Qiu & Sen Guo, 2020. "Policy Performance of Green Lighting Industry in China: A DID Analysis from the Perspective of Energy Conservation and Emission Reduction," Energies, MDPI, vol. 13(22), pages 1-18, November.
    3. Pahle, Michael & Schaeffer, Roberto & Pachauri, Shonali & Eom, Jiyong & Awasthy, Aayushi & Chen, Wenying & Di Maria, Corrado & Jiang, Kejun & He, Chenmin & Portugal-Pereira, Joana & Safonov, George & , 2021. "The crucial role of complementarity, transparency and adaptability for designing energy policies for sustainable development," Energy Policy, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enongene, K.E. & Murray, P. & Holland, J. & Abanda, F.H., 2017. "Energy savings and economic benefits of transition towards efficient lighting in residential buildings in Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 731-742.
    2. Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
    3. repec:hal:gemwpa:hal-00991732 is not listed on IDEAS
    4. Chitnis, Dipti & Thejo kalyani, N. & Swart, H.C. & Dhoble, S.J., 2016. "Escalating opportunities in the field of lighting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 727-748.
    5. Matej Tazky & Michal Regula & Alena Otcenasova, 2021. "Impact of Changes in a Distribution Network Nature on the Capacitive Reactive Power Flow into the Transmission Network in Slovakia," Energies, MDPI, vol. 14(17), pages 1-16, August.
    6. Fabio Fantozzi & Francesco Leccese & Giacomo Salvadori & Michele Rocca & Marco Garofalo, 2016. "LED Lighting for Indoor Sports Facilities: Can Its Use Be Considered as Sustainable Solution from a Techno-Economic Standpoint?," Sustainability, MDPI, vol. 8(7), pages 1-13, June.
    7. Aiman Albatayneh & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings," Energies, MDPI, vol. 14(17), pages 1-20, September.
    8. Khorasanizadeh, Hasti & Parkkinen, Jussi & Parthiban, Rajendran & David Moore, Joel, 2015. "Energy and economic benefits of LED adoption in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 629-637.
    9. Bambawale, Malavika Jain & Sovacool, Benjamin K., 2011. "China's energy security: The perspective of energy users," Applied Energy, Elsevier, vol. 88(5), pages 1949-1956, May.
    10. Mizanur Rahman, S.M. & Kim, Junbeum & Lerondel, Gilles & Bouzidi, Youcef & Nomenyo, Komla & Clerget, Laure, 2017. "Missing research focus in end-of-life management of light-emitting diode (LED) lamps," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 256-258.
    11. Karim Khan & Anwar Shah & Jaffar Khan, 2016. "Electricity Consumption Patterns: Comparative Evidence from Pakistan’s Public and Private Sectors," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 21(1), pages 99-122, Jan-June.
    12. Gielen, Dolf & Changhong, Chen, 2001. "The CO2 emission reduction benefits of Chinese energy policies and environmental policies:: A case study for Shanghai, period 1995-2020," Ecological Economics, Elsevier, vol. 39(2), pages 257-270, November.
    13. Di Stefano, Julian, 2000. "Energy efficiency and the environment: the potential for energy efficient lighting to save energy and reduce carbon dioxide emissions at Melbourne University, Australia," Energy, Elsevier, vol. 25(9), pages 823-839.
    14. Annika Groth, 2020. "Overcoming One-way Impact Evaluation of Rural Electrification Projects," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 464-476.
    15. Jahangir Hossain & Aida. F. A. Kadir & Ainain. N. Hanafi & Hussain Shareef & Tamer Khatib & Kyairul. A. Baharin & Mohamad. F. Sulaima, 2023. "A Review on Optimal Energy Management in Commercial Buildings," Energies, MDPI, vol. 16(4), pages 1-40, February.
    16. Timma, Lelde & Bazbauers, Gatis & Bariss, Uldis & Blumberga, Andra & Blumberga, Dagnija, 2017. "Energy efficiency policy analysis using socio-technical approach and system dynamics. Case study of lighting in Latvia's households," Energy Policy, Elsevier, vol. 109(C), pages 545-554.
    17. Khan, N. & Abas, N., 2011. "Comparative study of energy saving light sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 296-309, January.
    18. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H. & Karimi, M., 2014. "Optimum shunt capacitor placement in distribution system—A review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 429-439.
    19. Pode, Ramchandra, 2020. "Organic light emitting diode devices: An energy efficient solid state lighting for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza & Piran, Md Jalil, 2020. "A game theoretic approach for the duopoly pricing of energy-efficient appliances regarding innovation protection and social welfare," Energy, Elsevier, vol. 200(C).
    21. Miroslaw Wlas & Stanislaw Galla, 2018. "The Influence of LED Lighting Sources on the Nature of Power Factor," Energies, MDPI, vol. 11(6), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:31-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.