IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v109y2017icp545-554.html
   My bibliography  Save this article

Energy efficiency policy analysis using socio-technical approach and system dynamics. Case study of lighting in Latvia's households

Author

Listed:
  • Timma, Lelde
  • Bazbauers, Gatis
  • Bariss, Uldis
  • Blumberga, Andra
  • Blumberga, Dagnija

Abstract

Worldwide the lighting sector demands around 1/5 of total electricity used. While the diffusion of new lighting technologies occurs quickly and prices for these technologies drop, at the same time around 1/3 of households in developed European countries continue to choose incandescent light bulbs. This phenomena shows a large potential for saving electricity. Therefore, the aim of our research is to model the diffusion of innovation for energy efficiency solutions in households in Latvia. The methodology combines an empirical study with system dynamics modelling. The model showed that electricity consumption in households decreased by 14% from the year 2015 until the year 2040. The sensitivity analysis shows that changes in the parameters used in this analysis caused expected behaviour, where the uncertainly in electricity consumption in households accounted for ±16% in the year 2040. Although this developed system dynamics model was based on a specific process of diffusion of innovation, its general application to other products and services is possible, since the developed model serves as a white-box. The structure of the model can be used for other studies; the model can be enhanced with the newest results or adapted for other case studies.

Suggested Citation

  • Timma, Lelde & Bazbauers, Gatis & Bariss, Uldis & Blumberga, Andra & Blumberga, Dagnija, 2017. "Energy efficiency policy analysis using socio-technical approach and system dynamics. Case study of lighting in Latvia's households," Energy Policy, Elsevier, vol. 109(C), pages 545-554.
  • Handle: RePEc:eee:enepol:v:109:y:2017:i:c:p:545-554
    DOI: 10.1016/j.enpol.2017.07.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517304615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.07.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mills, Bradford & Schleich, Joachim, 2014. "Household transitions to energy efficient lighting," Energy Economics, Elsevier, vol. 46(C), pages 151-160.
    2. Khan, N. & Abas, N., 2011. "Comparative study of energy saving light sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 296-309, January.
    3. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    4. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    5. Wall, Rob & Crosbie, Tracey, 2009. "Potential for reducing electricity demand for lighting in households: An exploratory socio-technical study," Energy Policy, Elsevier, vol. 37(3), pages 1021-1031, March.
    6. Perlaviciute, G. & Steg, L., 2015. "The influence of values on evaluations of energy alternatives," Renewable Energy, Elsevier, vol. 77(C), pages 259-267.
    7. William D. Nordhaus, 1996. "Do Real-Output and Real-Wage Measures Capture Reality? The History of Lighting Suggests Not," NBER Chapters, in: The Economics of New Goods, pages 27-70, National Bureau of Economic Research, Inc.
    8. Aman, M.M. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A., 2013. "Analysis of the performance of domestic lighting lamps," Energy Policy, Elsevier, vol. 52(C), pages 482-500.
    9. Ringel, M., 2003. "Liberalising European electricity markets: opportunities and risks for a sustainable power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(6), pages 485-499, December.
    10. De Almeida, Aníbal & Santos, Bruno & Paolo, Bertoldi & Quicheron, Michel, 2014. "Solid state lighting review – Potential and challenges in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 30-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qing & Zhang, Lei & Zhang, Jinsuo & Zou, Shaohui, 2021. "System simulation and policy optimization of China's coal production capacity deviation in terms of the economy, environment, and energy security," Resources Policy, Elsevier, vol. 74(C).
    2. Shuai Liu & Guoxin Jiang & Le Chang & Chao Huang, 2023. "Construction and Simulation of High-Quality Development of China’s Resource-Based Cities Driven by Innovation Based on System Dynamics," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    3. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
    2. repec:hal:gemwpa:hal-00991732 is not listed on IDEAS
    3. Schleich, Joachim & Mills, Bradford & Dütschke, Elisabeth, 2014. "A brighter future? Quantifying the rebound effect in energy efficient lighting," Energy Policy, Elsevier, vol. 72(C), pages 35-42.
    4. Nardelli, Andrei & Deuschle, Eduardo & de Azevedo, Leticia Dalpaz & Pessoa, João Lorenço Novaes & Ghisi, Enedir, 2017. "Assessment of Light Emitting Diodes technology for general lighting: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 368-379.
    5. Fabio Fantozzi & Francesco Leccese & Giacomo Salvadori & Michele Rocca & Marco Garofalo, 2016. "LED Lighting for Indoor Sports Facilities: Can Its Use Be Considered as Sustainable Solution from a Techno-Economic Standpoint?," Sustainability, MDPI, vol. 8(7), pages 1-13, June.
    6. Fouladvand, Javanshir, 2022. "Behavioural attributes towards collective energy security in thermal energy communities: Environmental-friendly behaviour matters," Energy, Elsevier, vol. 261(PB).
    7. Aiman Albatayneh & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings," Energies, MDPI, vol. 14(17), pages 1-20, September.
    8. Khorasanizadeh, Hasti & Parkkinen, Jussi & Parthiban, Rajendran & David Moore, Joel, 2015. "Energy and economic benefits of LED adoption in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 629-637.
    9. Cem Keskin & M. Pınar Mengüç, 2018. "On Occupant Behavior and Innovation Studies Towards High Performance Buildings: A Transdisciplinary Approach," Sustainability, MDPI, vol. 10(10), pages 1-33, October.
    10. Franceschini, Simone & Borup, Mads & Rosales-Carreón, Jesús, 2018. "Future indoor light and associated energy consumption based on professionals' visions: A practice- and network-oriented analysis," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 1-11.
    11. Tuomela, Sanna & de Castro Tomé, Mauricio & Iivari, Netta & Svento, Rauli, 2021. "Impacts of home energy management systems on electricity consumption," Applied Energy, Elsevier, vol. 299(C).
    12. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.
    13. Polzin, Friedemann & Nolden, Colin & von Flotow, Paschen, 2018. "Drivers and barriers for municipal retrofitting activities – Evidence from a large-scale survey of German local authorities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 99-108.
    14. Fontecha, John E. & Walteros, Jose L. & Nikolaev, Alexander, 2021. "Reach maximization for social lotteries," Omega, Elsevier, vol. 105(C).
    15. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    16. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    17. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    18. Ensieh Shojaeddini & Ben Gilbert, 2023. "Heterogeneity in the Rebound Effect: Evidence from Efficient Lighting Subsidies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 173-217, January.
    19. Ang, James B. & Fredriksson, Per G. & Sharma, Swati, 2020. "Individualism and the adoption of clean energy technology," Resource and Energy Economics, Elsevier, vol. 61(C).
    20. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2018. "IRPsim: A techno-socio-economic energy system model vision for business strategy assessment at municipal level," Contributions of the Institute for Infrastructure and Resources Management 02/2018, University of Leipzig, Institute for Infrastructure and Resources Management.
    21. Gui, Xuechen & Gou, Zhonghua, 2022. "Household energy technologies in New South Wales, Australia: Regional differences and renewables adoption rates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:109:y:2017:i:c:p:545-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.