Long-term forecasts for energy commodities price: What the experts think
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2019.104484
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Baker, Erin & Chon, Haewon & Keisler, Jeffrey, 2009. "Advanced solar R&D: Combining economic analysis with expert elicitations to inform climate policy," Energy Economics, Elsevier, vol. 31(Supplemen), pages 37-49.
- Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
- Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
- Nolan Miller & Paul Resnick & Richard Zeckhauser, 2005. "Eliciting Informative Feedback: The Peer-Prediction Method," Management Science, INFORMS, vol. 51(9), pages 1359-1373, September.
- James D. Hamilton, 2009.
"Understanding Crude Oil Prices,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
- James D. Hamilton, 2008. "Understanding Crude Oil Prices," NBER Working Papers 14492, National Bureau of Economic Research, Inc.
- Shaheen, Susan A & Cohen, Adam P & Roberts, J. Darius, 2006. "Carsharing in North America: Market Growth, Current Developments, and Future Potential," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt46b7n137, Institute of Transportation Studies, UC Berkeley.
- Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
- Shaheen, Susan A & Cohen, Adam P, 2007. "Growth in Worldwide Carsharing: An International Comparison," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2zv240pp, Institute of Transportation Studies, UC Berkeley.
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
- Haugom, Erik & Mydland, Ørjan & Pichler, Alois, 2016. "Long term oil prices," Energy Economics, Elsevier, vol. 58(C), pages 84-94.
- Dražen Prelec & H. Sebastian Seung & John McCoy, 2017. "A solution to the single-question crowd wisdom problem," Nature, Nature, vol. 541(7638), pages 532-535, January.
- Cooke, Roger M. & Goossens, Louis L.H.J., 2008. "TU Delft expert judgment data base," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 657-674.
- Bistline, John E., 2014. "Energy technology expert elicitations: An application to natural gas turbine efficiencies," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 177-187.
- Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
- Cadenas, Erasmo & Rivera, Wilfrido, 2009. "Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks," Renewable Energy, Elsevier, vol. 34(1), pages 274-278.
- Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia, 2013.
"Going electric: Expert survey on the future of battery technologies for electric vehicles,"
Energy Policy, Elsevier, vol. 61(C), pages 403-413.
- Michela Catenacci & Elena Verdolini & Valentina Bosetti & Giulia Fiorese & Nadia Ameli, 2012. "Going Electric: Expert Survey on the Future of Battery Technologies for Electric Vehicles," Working Papers 2012.93, Fondazione Eni Enrico Mattei.
- Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia & Ameli, Nadia, 2012. "Going Electric: Expert Survey on the Future of Battery Technologies for Electric Vehicles," Climate Change and Sustainable Development 143123, Fondazione Eni Enrico Mattei (FEEM).
- Verdolini, Elena & Anadon, Laura Diaz & Lu, Jiaqi & Nemet, Gregory F., 2015.
"The effects of expert selection, elicitation design, and R&D assumptions on experts' estimates of the future costs of photovoltaics,"
Energy Policy, Elsevier, vol. 80(C), pages 233-243.
- Elena Verdolini & Laura Diaz Anadon & Jiaqi Lu & Gregory F. Nemet, 2015. "The Effects of Expert Selection, Elicitation Design, and R&D Assumptions on Experts’ Estimates of the Future Costs of Photovoltaics," Working Papers 2015.01, Fondazione Eni Enrico Mattei.
- Verdolini, Elena & Diaz Anadon, Laura & Lu, Jiaqi & Nemet, Gregory F., 2015. "The Effects of Expert Selection, Elicitation Design, and R&D Assumptions on Experts’ Estimates of the Future Costs of Photovoltaics," Energy: Resources and Markets 196997, Fondazione Eni Enrico Mattei (FEEM).
- Rajagopal, 2014.
"The Human Factors,"
Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249,
Palgrave Macmillan.
- Rajagopal, 2013. "The Human Factors," Palgrave Macmillan Books, in: Managing Social Media and Consumerism, chapter 9, pages 173-194, Palgrave Macmillan.
- Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
- Narayan, Paresh Kumar & Narayan, Seema, 2007. "Modelling oil price volatility," Energy Policy, Elsevier, vol. 35(12), pages 6549-6553, December.
- Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
- Cortazar, Gonzalo & Kovacevic, Ivo & Schwartz, Eduardo S., 2015. "Expected commodity returns and pricing models," Energy Economics, Elsevier, vol. 49(C), pages 60-71.
- Usher, Will & Strachan, Neil, 2013. "An expert elicitation of climate, energy and economic uncertainties," Energy Policy, Elsevier, vol. 61(C), pages 811-821.
- Hahn, Warren J. & DiLellio, James A. & Dyer, James S., 2014. "What do market-calibrated stochastic processes indicate about the long-term price of crude oil?," Energy Economics, Elsevier, vol. 44(C), pages 212-221.
- Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Saleh Abushamah, Hussein Abdulkareem & Skoda, Radek, 2022. "Nuclear energy for district cooling systems – Novel approach and its eco-environmental assessment method," Energy, Elsevier, vol. 250(C).
- Schönegger, Philipp & Verheyen, Steven, 2022. "Taking A Closer Look At The Bayesian Truth Serum: A Registered Report (Stage 2 Registered Report)," OSF Preprints 9zvqj, Center for Open Science.
- Feil, Alex Sandro & Antunes, Carlos Henggeler & da Silva, Patrícia Pereira & de Castro, Nivalde, 2024. "The critical drivers of the Brazilian electricity sector's transition through 2050: A Delphi study," Utilities Policy, Elsevier, vol. 87(C).
- Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
- Silva, Rodolfo Rodrigues Barrionuevo & Martins, André Christóvão Pio & Soler, Edilaine Martins & Baptista, Edméa Cássia & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2022. "Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems," Energy Economics, Elsevier, vol. 107(C).
- Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018.
"Future Prospects for Energy Technologies: Insights from Expert Elicitations,"
Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.
- Elena Verdolini & Laura Diaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "The Future Prospects of Energy Technologies: Insights from Expert Elicitations," Working Papers 2016.47, Fondazione Eni Enrico Mattei.
- Verdolini, Elena & Anadón, Laura Diaz & Baker, Erin & Bosetti, Valentina & Reis, Lara Aleluia, 2016. "The Future Prospects of Energy Technologies: Insights from Expert Elicitations," MITP: Mitigation, Innovation and Transformation Pathways 243148, Fondazione Eni Enrico Mattei (FEEM).
- Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
- Laura Diaz Anadon & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "Expert views - and disagreements - about the potential of energy technology R&D," Climatic Change, Springer, vol. 136(3), pages 677-691, June.
- Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
- Manel Hamdi & Chaker Aloui, 2015. "Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey," Economics Bulletin, AccessEcon, vol. 35(2), pages 1339-1359.
- Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
- Mason, Charles F. & Wilmot, Neil A., 2020. "Jumps in the convenience yield of crude oil," Resource and Energy Economics, Elsevier, vol. 60(C).
- Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
- Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
- Babak Fazelabdolabadi, 2019. "A hybrid Bayesian-network proposition for forecasting the crude oil price," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-21, December.
- Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
- Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
- Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
- Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
- Bissoondoyal-Bheenick, Emawtee & Brooks, Robert & Do, Hung Xuan & Smyth, Russell, 2020. "Exploiting the heteroskedasticity in measurement error to improve volatility predictions in oil and biofuel feedstock markets," Energy Economics, Elsevier, vol. 86(C).
- Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
- Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
- Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012.
"Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models,"
Energy Economics, Elsevier, vol. 34(1), pages 283-293.
- Mohamed El Hedi Arouri & Amine Lahiani & Khuong Nguyen Duc, 2010. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Working Papers 13, Development and Policies Research Center (DEPOCEN), Vietnam.
- Mohamed AROURI & Amine LAHIANI & D.-K. NGUYEN, 2010. "Forecasting the Conditional Volatility of Oil Spot andFutures Prices with Structural Breaksand Long Memory Models," LEO Working Papers / DR LEO 661, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Mohamed El Hedi Arouri & Duc Khuong Nguyen & Amine Lahiani, 2010. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Working Papers hal-00507831, HAL.
- Aldo Levy & M.H. Arouri & Amine Lahiani & Duc Khuong Nguyen, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Post-Print halshs-01279906, HAL.
More about this item
Keywords
Crude oil prices; Natural gas prices; Expert elicitation; Bayesian Truth Serum; Surprisingly popular;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:84:y:2019:i:c:s0140988319302658. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.