The changes in coal intensity of electricity generation in Chinese coal-fired power plants
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2019.01.032
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Chunhua, 2013. "Changing energy intensity of economies in the world and its decomposition," Energy Economics, Elsevier, vol. 40(C), pages 637-644.
- Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
- Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
- Ding, Yi & Yang, Hongliang, 2013. "Promoting energy-saving and environmentally friendly generation dispatching model in China: Phase development and case studies," Energy Policy, Elsevier, vol. 57(C), pages 109-118.
- Hering, Laura & Poncet, Sandra, 2014.
"Environmental policy and exports: Evidence from Chinese cities,"
Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 296-318.
- Laura Hering & Sandra Poncet, 2014. "Environmental policy and exports: Evidence from Chinese cities," Post-Print hal-01162230, HAL.
- Laura Hering & Sandra Poncet, 2014. "Environmental policy and exports: Evidence from Chinese cities," PSE-Ecole d'économie de Paris (Postprint) hal-01162230, HAL.
- Laura Hering & Sandra Poncet, 2014. "Environmental policy and exports: Evidence from Chinese cities," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01162230, HAL.
- Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
- Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
- Du, Limin & He, Yanan & Yan, Jianye, 2013. "The effects of electricity reforms on productivity and efficiency of China's fossil-fired power plants: An empirical analysis," Energy Economics, Elsevier, vol. 40(C), pages 804-812.
- Brandt, Loren & Van Biesebroeck, Johannes & Zhang, Yifan, 2012.
"Creative accounting or creative destruction? Firm-level productivity growth in Chinese manufacturing,"
Journal of Development Economics, Elsevier, vol. 97(2), pages 339-351.
- Loren Brandt & Johannes Van Biesebroeck & Yifan Zhang, 2009. "Creative Accounting or Creative Destruction? Firm-level Productivity Growth in Chinese Manufacturing," NBER Working Papers 15152, National Bureau of Economic Research, Inc.
- Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
- Wang, Chunhua, 2007. "Decomposing energy productivity change: A distance function approach," Energy, Elsevier, vol. 32(8), pages 1326-1333.
- Subodh Kumar & R. Robert Russell, 2002. "Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence," American Economic Review, American Economic Association, vol. 92(3), pages 527-548, June.
- Daniel J. Henderson & R. Robert Russell, 2005. "Human Capital And Convergence: A Production-Frontier Approach ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1167-1205, November.
- Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
- Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
- Wang, Chunhua, 2011. "Sources of energy productivity growth and its distribution dynamics in China," Resource and Energy Economics, Elsevier, vol. 33(1), pages 279-292, January.
- Luis R. Murillo-Zamorano, 2005. "The Role of Energy in Productivity Growth: A Controversial Issue?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 69-88.
- Ma, Chunbo & Zhao, Xiaoli, 2015. "China's electricity market restructuring and technology mandates: Plant-level evidence for changing operational efficiency," Energy Economics, Elsevier, vol. 47(C), pages 227-237.
- Fare, Rolf & Grosskopf, Shawna & Norris, Mary, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Reply," American Economic Review, American Economic Association, vol. 87(5), pages 1040-1043, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Ruchuan & Wei, Qian & Li, Aijun & Ren, LiYing, 2022. "Measuring efficiency and technology inequality of China's electricity generation and transmission system: A new approach of network Data Envelopment Analysis prospect cross-efficiency models," Energy, Elsevier, vol. 246(C).
- Feihua Huang & Yue Du & Debao Hu & Bin Zhang, 2021. "Sustainable Performance Analysis of Power Supply Chain System from the Perspective of Technology and Management," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
- Zhang, Ning & Jiang, Xue-Feng, 2019. "The effect of environmental policy on Chinese firm's green productivity and shadow price: A metafrontier input distance function approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 129-136.
- Zhang, Guo-Xing & Yang, Yang & Su, Bin & Nie, Yan & Duan, Hong-Bo, 2023. "Electricity production, power generation structure, and air pollution: A monthly data analysis for 279 cities in China (2015–2019)," Energy Economics, Elsevier, vol. 120(C).
- Yongqing Nan & Qin Li & Haiya Cai & Zhou Qin, 2020. "Are there industrial SO2 convergences in China’s prefecture-level cities? New evidence from a spatial econometric perspective," Energy & Environment, , vol. 31(3), pages 440-460, May.
- Li, Gao & Ruonan, Li & Yingdan, Mei & Xiaoli, Zhao, 2022. "Improve technical efficiency of China's coal-fired power enterprises: Taking a coal-fired-withdrawl context," Energy, Elsevier, vol. 252(C).
- Du, Limin & Lu, Yunguo & Ma, Chunbo, 2022. "Carbon efficiency and abatement cost of China's coal-fired power plants," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Eguchi, Shogo & Takayabu, Hirotaka & Lin, Chen, 2021. "Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Abdullah, Mohammad & Abakah, Emmanuel Joel Aikins & Wali Ullah, G M & Tiwari, Aviral Kumar & Khan, Isma, 2023. "Tail risk contagion across electricity markets in crisis periods," Energy Economics, Elsevier, vol. 127(PB).
- Shogo Eguchi, 2022. "CO 2 Reduction Potential from Efficiency Improvements in China’s Coal-Fired Thermal Power Generation: A Combined Approach of Metafrontier DEA and LMDI," Energies, MDPI, vol. 15(7), pages 1-19, March.
- Wei, Wei & Han, Ying & Abedin, Mohammad Zoynul & Ma, Jingjing & Chai, Shanglei, 2023. "Empirical study on the technical efficiency and total factor productivity of power industry: Evidence from Chinese provinces," Energy Economics, Elsevier, vol. 128(C).
- Xie, Li & Li, Zexin & Ye, Xiuhua & Jiang, Yanru, 2021. "Environmental regulation and energy investment structure: Empirical evidence from China's power industry," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
- Maamoun, Nada & Kennedy, Ryan & Jin, Xiaomeng & Urpelainen, Johannes, 2020. "Identifying coal-fired power plants for early retirement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
- Wang, Yongpei & Yan, Weilong & Komonpipat, Supak, 2019. "How does the capacity utilization of thermal power generation affect pollutant emissions? Evidence from the panel data of China's provinces," Energy Policy, Elsevier, vol. 132(C), pages 440-451.
- Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
- Nakaishi, Tomoaki, 2021. "Developing effective CO2 and SO2 mitigation strategy based on marginal abatement costs of coal-fired power plants in China," Applied Energy, Elsevier, vol. 294(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Chunhua, 2013. "Changing energy intensity of economies in the world and its decomposition," Energy Economics, Elsevier, vol. 40(C), pages 637-644.
- Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
- Wang, Chunhua, 2011. "Sources of energy productivity growth and its distribution dynamics in China," Resource and Energy Economics, Elsevier, vol. 33(1), pages 279-292, January.
- Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
- Wang, Ke & Wei, Yi-Ming, 2016.
"Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator,"
Energy Economics, Elsevier, vol. 54(C), pages 50-59.
- Ke Wang & Yi-Ming Wei, 2015. "Sources of energy productivity change in China during 1997-2012: A decomposition analysis based on the Luenberger productivity indicator," CEEP-BIT Working Papers 86, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Rolf Färe & Shawna Grosskopf & Carl A. Pasurka & Ron Shadbegian, 2018. "Pollution abatement and employment," Empirical Economics, Springer, vol. 54(1), pages 259-285, February.
- Du, Kerui & Lin, Boqiang, 2015. "Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework," Energy, Elsevier, vol. 90(P1), pages 570-577.
- Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
- Po-Chi Chen & Ming-Miin Yu, 2014. "Total factor productivity growth and directions of technical change bias: evidence from 99 OECD and non-OECD countries," Annals of Operations Research, Springer, vol. 214(1), pages 143-165, March.
- Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
- Travaglini, Giuseppe, 2012. "Trade-off between labor productivity and capital accumulation in Italian energy sector," Journal of Policy Modeling, Elsevier, vol. 34(1), pages 35-48.
- Walheer, Barnabé & He, Ming, 2020.
"Technical efficiency and technology gap of the manufacturing industry in China: Does firm ownership matter?,"
World Development, Elsevier, vol. 127(C).
- He, Ming & Walheer, Barnabé, 2018. "Technical efficiency and technology gap of the manufacturing industry in China: Does firm ownership matter?," RIEI Working Papers 2018-05, Xi'an Jiaotong-Liverpool University, Research Institute for Economic Integration.
- Zhao, Zhibo & Shi, Xunpeng & Zhao, Lingdi & Zhang, Jinggu, 2020. "Extending production-theoretical decomposition analysis to environmentally sensitive growth: Case study of Belt and Road Initiative countries," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
- Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
- Ant Afonso & Miguel St. Aubyn, 2013.
"Public and private inputs in aggregate production and growth: a cross-country efficiency approach,"
Applied Economics, Taylor & Francis Journals, vol. 45(32), pages 4487-4502, November.
- Afonso, António & St. Aubyn, Miguel, 2010. "Public and private inputs in aggregate production and growth: a cross-country efficiency approach," Working Paper Series 1154, European Central Bank.
- António Afonso & Miguel St. Aubyn, 2010. "Public and Private Inputs in Aggregate Production and Growth: A Cross-country Efficiency Approach," Working Papers Department of Economics 2010/09, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
- António AFONSO & Miguel ST. AUBYN, 2010. "Public and Private Inputs in Aggregate Production and Growth: A Cross-country Efficiency Approach," EcoMod2010 259600004, EcoMod.
- Walheer, Barnabé, 2018. "Disaggregation of the cost Malmquist productivity index with joint and output-specific inputs," Omega, Elsevier, vol. 75(C), pages 1-12.
- Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
- Zhang, Ning & Jiang, Xue-Feng, 2019. "The effect of environmental policy on Chinese firm's green productivity and shadow price: A metafrontier input distance function approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 129-136.
- Kim, Kyunam & Kim, Yeonbae, 2012. "International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition," Energy Economics, Elsevier, vol. 34(5), pages 1724-1741.
- Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
More about this item
Keywords
Coal intensity; Electricity generation; Decomposition; China;All these keywords.
JEL classification:
- Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:80:y:2019:i:c:p:491-501. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.