IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v73y2018icp371-379.html
   My bibliography  Save this article

Changing baselines, shifting margins: How predicted impacts of pricing carbon in the electricity sector have evolved over time

Author

Listed:
  • Palmer, Karen
  • Paul, Anthony
  • Keyes, Amelia

Abstract

CO2 emissions reductions from within the U.S. electricity sector can come primarily from four sources: reductions in the emissions intensity of the operating coal and natural gas fleets, shifting generation from coal to natural gas, shifting generation from fossil fuels to renewables, and reduced total generation in response to lower electricity demand. The relative importance of each of these margins depends on technology costs, fuel costs, and electricity demand growth. In this paper we explore how recent changes in actual and predicted technology costs for renewables, natural gas prices, and the rate of electricity demand growth have affected emissions from the electricity sector. We use a model to analyze how the sector would respond to a carbon tax with emphasis on the contributions of the four margins and compare with older analysis performed when technology and fuel cost projections were different. We find that a carbon tax induces a more prominent shift of generation from both coal and gas to renewables than from coal to both gas and renewables under the more recent technology and cost projections. We also show that contrary to findings from earlier analysis with higher assumed renewables costs, high natural gas prices enhance the effectiveness of CO2 taxes through greater substitution from gas to renewables. Carbon taxes are having a smaller impact on retail electricity prices in both absolute and percentage terms and thus on overall demand with the more recent projections.

Suggested Citation

  • Palmer, Karen & Paul, Anthony & Keyes, Amelia, 2018. "Changing baselines, shifting margins: How predicted impacts of pricing carbon in the electricity sector have evolved over time," Energy Economics, Elsevier, vol. 73(C), pages 371-379.
  • Handle: RePEc:eee:eneeco:v:73:y:2018:i:c:p:371-379
    DOI: 10.1016/j.eneco.2018.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098831830104X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Burtraw, Dallas & Palmer, Karen & Paul, Anthony & Woerman, Matt, 2012. "Secular Trends, Environmental Regulation, and Electricity Markets," RFF Working Paper Series dp-12-15, Resources for the Future.
    2. Winston Harrington & Richard D. Morgenstern & Peter Nelson, 2000. "On the accuracy of regulatory cost estimates," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 297-322.
    3. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    4. Anthony Paul & Karen Palmer & Matthew Woerman, 2015. "Incentives, Margins, And Cost Effectiveness In Comprehensive Climate Policy For The Power Sector," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Picciano, Paul & Aguilar, Francisco X. & Burtraw, Dallas & Mirzaee, Ashkan, 2022. "Environmental and socio-economic implications of woody biomass co-firing at coal-fired power plants," Resource and Energy Economics, Elsevier, vol. 68(C).
    2. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    3. Alexander R. Barron & Allen A. Fawcett & Marc A. C. Hafstead & James R. Mcfarland & Adele C. Morris, 2018. "Policy Insights From The Emf 32 Study On U.S. Carbon Tax Scenarios," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-47, February.
    4. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    5. Bistline, John E.T. & Blanford, Geoffrey J., 2020. "Value of technology in the U.S. electric power sector: Impacts of full portfolios and technological change on the costs of meeting decarbonization goals," Energy Economics, Elsevier, vol. 86(C).
    6. Woerman, Matt, 2023. "Linking carbon markets with different initial conditions," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    7. Dahlke, Steven, 2019. "Short run effects of carbon policy on U.S. electricity markets," SocArXiv b79yu, Center for Open Science.
    8. Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
    9. Cleary, Kathryne & Funke, Christoph & Witkin, Steven & Shawhan, Daniel, 2021. "The Value of Advanced Energy Funding: Projected Effects of Proposed US Funding for Advanced Energy Technologies," RFF Working Paper Series 21-10, Resources for the Future.
    10. Yumeng Mao & Xuemei Li, 2023. "A Review of Research on the Impact Mechanisms of Green Development in the Transportation Industry," Sustainability, MDPI, vol. 15(23), pages 1-26, December.
    11. John Bistlinea & Chikara Onda & Morgan Browning & Johannes Emmerling & Gokul Iyer & Megan Mahajan & Jim McFarland & Haewon McJeon & Robbie Orvis & Francisco Ralston Fonseca & Christopher Roney & Noah , 2024. "Equity Implications of Net-Zero Emissions: A Multi-Model Analysis of Energy Expenditures Across Income Classes Under Economy-Wide Deep Decarbonization Policies," Papers 2405.18748, arXiv.org.
    12. Steve Dahlke, 2019. "Short Run Effects of Carbon Policy on U.S. Electricity Markets," Energies, MDPI, vol. 12(11), pages 1-21, June.
    13. Keyes, Amelia & Lambert, Kathleen & Burtraw, Dallas & Buonocore, Jonathan & Levy, Jonathan & Driscoll, Charles, 2018. "Carbon Standards Examined: A Comparison of At-the-Source and Beyond-the-Source Power Plant Carbon Standards," RFF Working Paper Series 18-20, Resources for the Future.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burtraw, Dallas & Woerman, Matt & Paul, Anthony, 2012. "Retail electricity price savings from compliance flexibility in GHG standards for stationary sources," Energy Policy, Elsevier, vol. 42(C), pages 67-77.
    2. Norman, Catherine S. & DECANIO, STEPHEN J & Fan, Lin, 2007. "Opportunities and Challenges for the 20th Anniversary of the Montréal Protocol," University of California at Santa Barbara, Economics Working Paper Series qt3t90g0gr, Department of Economics, UC Santa Barbara.
    3. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    4. Jing Bai & Chuang Tu & Jiming Bai, 2024. "Measuring and decomposing Beijing’s energy performance: an energy- and exergy-based perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17617-17633, July.
    5. Managi, Shunsuke & Opaluch, James J. & Jin, Di & Grigalunas, Thomas A., 2006. "Stochastic frontier analysis of total factor productivity in the offshore oil and gas industry," Ecological Economics, Elsevier, vol. 60(1), pages 204-215, November.
    6. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    7. Juan Luo & Chong Xu & Boyu Yang & Xiaoyu Chen & Yinyin Wu, 2022. "Quantitative Analysis of China’s Carbon Emissions Trading Policies: Perspectives of Policy Content Validity and Carbon Emissions Reduction Effect," Energies, MDPI, vol. 15(14), pages 1-20, July.
    8. Frank Ackerman, "undated". "The Unbearable Lightness of Regulatory Costs," GDAE Working Papers 06-02, GDAE, Tufts University.
    9. Johannes Urpelainen, 2011. "Frontrunners and Laggards: The Strategy of Environmental Regulation under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(3), pages 325-346, November.
    10. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    11. Jiandong Chen & Ping Wang & Jixian Zhou & Malin Song & Xinyue Zhang, 2022. "Influencing factors and efficiency of funds in humanitarian supply chains: the case of Chinese rural minimum living security funds," Annals of Operations Research, Springer, vol. 319(1), pages 413-438, December.
    12. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    13. John Loomis & Bryon Allen, 2008. "Using Non Market Valuation to Inform the Choice Between Permits and Fees in Environmental Regulation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(3), pages 329-337, July.
    14. Stavins, Robert & Hahn, Robert & Cavanagh, Sheila, 2001. "National Environmental Policy During the Clinton Years," RFF Working Paper Series dp-01-38, Resources for the Future.
    15. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    16. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    17. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    18. Zhou, P. & Zhang, H. & Zhang, L.P., 2022. "The drivers of energy intensity changes in Chinese cities: A production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 307(C).
    19. Baležentis, Tomas & Li, Tianxiang & Chen, Xueli, 2021. "Has agricultural labor restructuring improved agricultural labor productivity in China? A decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    20. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).

    More about this item

    Keywords

    Climate; Carbon tax; Electricity; Baseline;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:73:y:2018:i:c:p:371-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.