IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v43y2014icp166-177.html
   My bibliography  Save this article

The impact of carbon capture and storage on a decarbonized German power market

Author

Listed:
  • Spiecker, S.
  • Eickholt, V.
  • Weber, C.

Abstract

The European energy policy is substantially driven by the target to reduce the CO2-emissions significantly and to mitigate climate change. Nevertheless European power generation is still widely based on fossil fuels. The carbon capture and storage technology (CCS) could be part of an approach to achieve ambitious CO2 reduction targets without large scale transformations of the existing energy system. In this context the paper investigates on how far the CCS-technology could play a role in the European and most notably in the German electricity generation sector. To account for all the interdependencies with the European neighboring countries, the embedding of the German electricity system is modeled using a stochastic European electricity market model (E2M2s). After modeling the European side constraints, the German electricity system is considered in detail with the stochastic German Electricity market model (GEM2s). The focus is thereby on the location of CCS plant sites, the structure of the CO2-pipeline network and the regional distribution of storage sites. Results for three different European energy market scenarios are presented up to the year 2050. Additionally, the use of CCS with use of onshore and offshore sites is investigated.

Suggested Citation

  • Spiecker, S. & Eickholt, V. & Weber, C., 2014. "The impact of carbon capture and storage on a decarbonized German power market," Energy Economics, Elsevier, vol. 43(C), pages 166-177.
  • Handle: RePEc:eee:eneeco:v:43:y:2014:i:c:p:166-177
    DOI: 10.1016/j.eneco.2014.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314000504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.02.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roman Mendelevitch & Johannes Herold & Pao-Yu Oei & Andreas Tissen, 2010. "CO2 Highways for Europe: Modeling a Carbon Capture, Transport and Storage Infrastructure for Europe," Discussion Papers of DIW Berlin 1052, DIW Berlin, German Institute for Economic Research.
    2. Stephan Spiecker & Christoph Weber, 2012. "Integration of Fluctuating Renewable Energy in Europe," Operations Research Proceedings, in: Diethard Klatte & Hans-Jakob Lüthi & Karl Schmedders (ed.), Operations Research Proceedings 2011, edition 127, pages 141-146, Springer.
    3. Nykvist, Björn, 2013. "Ten times more difficult: Quantifying the carbon capture and storage challenge," Energy Policy, Elsevier, vol. 55(C), pages 683-689.
    4. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    5. McFarland, James R. & Herzog, Howard J., 2006. "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Elsevier, vol. 28(5-6), pages 632-652, November.
    6. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
    7. Spiecker, Stephan & Vogel, Philip & Weber, Christoph, 2013. "Evaluating interconnector investments in the north European electricity system considering fluctuating wind power penetration," Energy Economics, Elsevier, vol. 37(C), pages 114-127.
    8. Peter Viebahn & Daniel Vallentin & Samuel Höller & Manfred Fischedick, 2012. "Integrated assessment of CCS in the German power plant sector with special emphasis on the competition with renewable energy technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 707-730, August.
    9. Lohwasser, Richard & Madlener, Reinhard, 2012. "Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe," Energy Economics, Elsevier, vol. 34(3), pages 850-863.
    10. Labriet, Maryse & Kanudia, Amit & Loulou, Richard, 2012. "Climate mitigation under an uncertain technology future: A TIAM-World analysis," Energy Economics, Elsevier, vol. 34(S3), pages 366-377.
    11. Szolgayova, Jana & Fuss, Sabine & Obersteiner, Michael, 2008. "Assessing the effects of CO2 price caps on electricity investments--A real options analysis," Energy Policy, Elsevier, vol. 36(10), pages 3974-3981, October.
    12. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    13. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    14. Gerbelová, Hana & Versteeg, Peter & Ioakimidis, Christos S. & Ferrão, Paulo, 2013. "The effect of retrofitting Portuguese fossil fuel power plants with CCS," Applied Energy, Elsevier, vol. 101(C), pages 280-287.
    15. Kraeusel, Jonas & Möst, Dominik, 2012. "Carbon Capture and Storage on its way to large-scale deployment: Social acceptance and willingness to pay in Germany," Energy Policy, Elsevier, vol. 49(C), pages 642-651.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    2. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    3. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    4. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    5. Valentina Kashintseva & Wadim Strielkowski & Justas Streimikis & Tatiana Veynbender, 2018. "Consumer Attitudes towards Industrial CO 2 Capture and Storage Products and Technologies," Energies, MDPI, vol. 11(10), pages 1-14, October.
    6. Alami, Abdul Hai & Hawili, Abdullah Abu & Hassan, Rita & Al-Hemyari, Mohammed & Aokal, Kamilia, 2019. "Experimental study of carbon dioxide as working fluid in a closed-loop compressed gas energy storage system," Renewable Energy, Elsevier, vol. 134(C), pages 603-611.
    7. Melanie Dunger & Janina Kraus, 2024. "Bridging Individual Behavior and Technological Solutions in Climate Change Mitigation," Bremen Papers on Economics & Innovation 2401, University of Bremen, Faculty of Business Studies and Economics.
    8. Helga Kristjánsdóttir & Sigríður Kristjánsdóttir, 2021. "Carbfix And Sulfix In Geothermal Production, And The Blue Lagoon In Iceland: Grindavik Urban Settlement, And Volcanic Activity," Baltic Journal of Economic Studies, Publishing house "Baltija Publishing", vol. 7(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Spiecker & Volker Eickholt, 2013. "The Impact Of Carbon Capture And Storage On A Decarbonized German Power Market," EWL Working Papers 1304, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2013.
    2. Zhu, Lei & Fan, Ying, 2013. "Modelling the investment in carbon capture retrofits of pulverized coal-fired plants," Energy, Elsevier, vol. 57(C), pages 66-75.
    3. Duan, Hong-Bo & Fan, Ying & Zhu, Lei, 2013. "What’s the most cost-effective policy of CO2 targeted reduction: An application of aggregated economic technological model with CCS?," Applied Energy, Elsevier, vol. 112(C), pages 866-875.
    4. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Audrey Laude & Christian Jonen, 2011. "Biomass and CCS: The influence of the learning effect," Working Papers halshs-00829779, HAL.
    7. Eide, Jan & de Sisternes, Fernando J. & Herzog, Howard J. & Webster, Mort D., 2014. "CO2 emission standards and investment in carbon capture," Energy Economics, Elsevier, vol. 45(C), pages 53-65.
    8. Dahlen, Niklas & Fehrenkötter, Rieke & Schreiter, Maximilian, 2024. "The new bond on the block — Designing a carbon-linked bond for sustainable investment projects," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 316-325.
    9. Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.
    10. Brauneis, Alexander & Mestel, Roland & Palan, Stefan, 2013. "Inducing low-carbon investment in the electric power industry through a price floor for emissions trading," Energy Policy, Elsevier, vol. 53(C), pages 190-204.
    11. Laude, Audrey & Jonen, Christian, 2013. "Biomass and CCS: The influence of technical change," Energy Policy, Elsevier, vol. 60(C), pages 916-924.
    12. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    13. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
    14. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    15. Xiping Wang & Hongdou Zhang, 2018. "Valuation of CCS investment in China's coal‐fired power plants based on a compound real options model," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 978-988, October.
    16. Batas Bjelić, Ilija & Rajaković, Nikola & Krajačić, Goran & Duić, Neven, 2016. "Two methods for decreasing the flexibility gap in national energy systems," Energy, Elsevier, vol. 115(P3), pages 1701-1709.
    17. Hervé-Mignucci, Morgan, 2011. "Rôle du signal prix du carbone sur les décisions d'investissement des entreprises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/8200 edited by Keppler, Jan Horst.
    18. Mo, Jianlei & Schleich, Joachim & Fan, Ying, 2018. "Getting ready for future carbon abatement under uncertainty – Key factors driving investment with policy implications," Energy Economics, Elsevier, vol. 70(C), pages 453-464.
    19. Mo, Jianlei & Cui, Lianbiao & Duan, Hongbo, 2021. "Quantifying the implied risk for newly-built coal plant to become stranded asset by carbon pricing," Energy Economics, Elsevier, vol. 99(C).
    20. Compernolle, T. & Welkenhuysen, K. & Huisman, K. & Piessens, K. & Kort, P., 2017. "Off-shore enhanced oil recovery in the North Sea: The impact of price uncertainty on the investment decisions," Energy Policy, Elsevier, vol. 101(C), pages 123-137.

    More about this item

    Keywords

    Stochastic optimization; Carbon capture and storage; Power system economics;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:43:y:2014:i:c:p:166-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.