IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v40y2013icp316-325.html
   My bibliography  Save this article

Substitution in the electric power industry: An interregional comparison in the eastern US

Author

Listed:
  • Gao, Jing
  • Nelson, Robert
  • Zhang, Lei

Abstract

The electric power industry is restructuring as regulations move from states to regional and national levels. Estimates of regional fuel and input substitution are essential for practitioners and policy makers. This paper estimates substitution under static and dynamic scenarios, examining changes in technology and total factor productivity from 2001 to 2008. Two-stage estimation reveals regional characteristics and underlying elements in fuel and factor choice processes. Substitution varies widely depending on the region, coal technology, capital investment, and R&D activities.

Suggested Citation

  • Gao, Jing & Nelson, Robert & Zhang, Lei, 2013. "Substitution in the electric power industry: An interregional comparison in the eastern US," Energy Economics, Elsevier, vol. 40(C), pages 316-325.
  • Handle: RePEc:eee:eneeco:v:40:y:2013:i:c:p:316-325
    DOI: 10.1016/j.eneco.2013.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988313001564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2013.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
    2. Kaserman, David L & Mayo, John W, 1991. "The Measurement of Vertical Economies and the Efficient Structure of the Electric Utility Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 39(5), pages 483-502, September.
    3. Tauchmann, H., 2006. "Firing the furnace? An econometric analysis of utilities' fuel choice," Energy Policy, Elsevier, vol. 34(18), pages 3898-3909, December.
    4. Dahl, Carol & Ko, James, 1998. "The effect of deregulation on US fossil fuel substitution in the generation of electricity," Energy Policy, Elsevier, vol. 26(13), pages 981-988, November.
    5. Debertin, David L. & Pagoulatos, Angelos & Aoun, Abdessalem, 1990. "Impacts of technological change on factor substitution between energy and other inputs within US agriculture, 1950-79," Energy Economics, Elsevier, vol. 12(1), pages 2-10, January.
    6. Soderholm, Patrik, 2000. "Fuel flexibility in the West European power sector," Resources Policy, Elsevier, vol. 26(3), pages 157-170, September.
    7. Bopp, Anthony E. & Costello, David, 1990. "The economics of fuel choice at US electric utilities," Energy Economics, Elsevier, vol. 12(2), pages 82-88, April.
    8. Considine, Timothy J. & Larson, Donald F., 2006. "The environment as a factor of production," Journal of Environmental Economics and Management, Elsevier, vol. 52(3), pages 645-662, November.
    9. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.
    10. Atkinson, Scott E & Halvorsen, Robert, 1976. "Interfuel Substitution in Steam Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(5), pages 959-978, October.
    11. Lee, Myunghun, 2002. "The effect of sulfur regulations on the U.S. electric power industry: a generalized cost approach," Energy Economics, Elsevier, vol. 24(5), pages 491-508, September.
    12. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    13. Griffin, James M, 1977. "Inter-fuel Substitution Possibilities: A Translog Application to Intercountry Data," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(3), pages 755-770, October.
    14. Uri, Noel D., 1978. "Interfuel substitution possibilities: short-term prospects," Applied Energy, Elsevier, vol. 4(4), pages 251-260, October.
    15. Gollop, Frank M & Roberts, Mark J, 1983. "Environmental Regulations and Productivity Growth: The Case of Fossil-Fueled Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 91(4), pages 654-674, August.
    16. Soderholm, Patrik, 2001. "Fossil fuel flexibility in west European power generation and the impact of system load factors," Energy Economics, Elsevier, vol. 23(1), pages 77-97, January.
    17. Cho, Won G. & Nam, Kiseok & Pagan, Jose A., 2004. "Economic growth and interfactor/interfuel substitution in Korea," Energy Economics, Elsevier, vol. 26(1), pages 31-50, January.
    18. James Ko & Carol Dahl, 2001. "Interfuel substitution in US electricity generation," Applied Economics, Taylor & Francis Journals, vol. 33(14), pages 1833-1843.
    19. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tri Wahyu Adi & Pawenary Pawenary & Eri Prabowo, 2023. "Nuclear Energy Generation, Fossil Fuel Price, Energy Mix Generation, Economic Growth, FDI Inflow and CO2 Emission: A Case Study on Developed and Developing Countries in the Asia Pacific Region," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 144-156, September.
    2. Pan Lingying, & Kui, Zhou & Weiqi, Li & Fuyuan, Yang & Zheng, Li, 2019. "Subsidy policy discussion on the hydroelectric power substitution for scattered coal consumption: A case study of Sichuan Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 539-549.
    3. Wang, Qunwei & Zhang, Cheng & Cai, Wanhuan, 2017. "Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis," Energy Policy, Elsevier, vol. 109(C), pages 181-190.
    4. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Mohammed Al-Mahish, 2017. "Economies of Scale, Technical Change, and Total Factor Productivity Growth of the Saudi Electricity Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 86-94.
    6. Elbakidze, Levan & Zaynutdinova, Gulnara, 2016. "Substitution in electricity generation: A state level analysis of structural change from hydraulic fracturing technology," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235780, Agricultural and Applied Economics Association.
    7. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.
    2. Matisoff, Daniel C. & Noonan, Douglas S. & Cui, Jinshu, 2014. "Electric utilities, fuel use, and responsiveness to fuel prices," Energy Economics, Elsevier, vol. 46(C), pages 445-452.
    3. Tauchmann, H., 2006. "Firing the furnace? An econometric analysis of utilities' fuel choice," Energy Policy, Elsevier, vol. 34(18), pages 3898-3909, December.
    4. J. Scott Holladay & Steven Soloway, 2015. "The Environmental Impacts of Fuel Switching Power Plants," Working Papers 2015-05, University of Tennessee, Department of Economics.
    5. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
    6. J. Scott Holladay and Steven Soloway, 2016. "The Environmental Impacts of Fuel Switching Electricity Generators," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    7. Soderholm, Patrik, 2001. "Fossil fuel flexibility in west European power generation and the impact of system load factors," Energy Economics, Elsevier, vol. 23(1), pages 77-97, January.
    8. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    9. Lafrancois, Becky A., 2012. "A lot left over: Reducing CO2 emissions in the United States’ electric power sector through the use of natural gas," Energy Policy, Elsevier, vol. 50(C), pages 428-435.
    10. Patrik Söderholm, 2000. "Environmental Regulations and Interfuel Substitution in the Power Sector: A Generalized Leontief Model," Energy & Environment, , vol. 11(1), pages 1-23, January.
    11. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
    12. Andersen, Trude Berg & Nilsen, Odd Bjarte & Tveteras, Ragnar, 2011. "How is demand for natural gas determined across European industrial sectors?," Energy Policy, Elsevier, vol. 39(9), pages 5499-5508, September.
    13. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    14. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," Working Papers 3-1, Faculty of Economics,University of Tehran.Tehran,Iran.
    15. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    16. Mirshojaeian Hosseini , Hossein & Majed , Vahid & Kaneko , Shinji, 2015. "The Effects of Energy Subsidy Reform on Fuel Demand in Iran," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 10(2), pages 23-47, January.
    17. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    18. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
    19. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Gas and electricity demand in Spanish manufacturing industries: An analysis using homogeneous and heterogeneous estimators," Utilities Policy, Elsevier, vol. 45(C), pages 45-60.
    20. Harald Tauchmann, 2005. "Co2 Abatement and Fuel Mix in German Electric Power Generation — Is the “Ecological Electricity Tax†Ecologically Effective?," Energy & Environment, , vol. 16(2), pages 255-271, March.

    More about this item

    Keywords

    Electricity generation; Interfactor substitution; Interfuel substitution; Technological change; Total factor productivity;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:40:y:2013:i:c:p:316-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.