IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v133y2024ics0140988324001580.html
   My bibliography  Save this article

How do climate risks impact the contagion in China's energy market?

Author

Listed:
  • Guo, Kun
  • Kang, Yuxin
  • Ma, Dandan
  • Lei, Lei

Abstract

Energy security is a critical facet of national security, especially in energy-importing countries, and significant fluctuations in the energy market can profoundly influence the real economy. With the intensification of global climate change, extreme weather events and diverse energy transition policies emerge as prominent risk factors driving energy market volatility. In this study, we employed a time-varying parameter vector autoregression (TVP-VAR) model and the spillover index method of generalized variance decomposition to assess the endogenous contagion and exogenous shock risk of China's energy prices and the systematic risk in the broader energy market. Our analysis included the coal, oil, and natural gas prices in both Chinese and international markets. The results indicate that the international oil market plays a dominant role in the energy risk spillover network, with the exogenous shock risk in China's energy market surpassing the endogenous contagion risk. Further, quantile models were used to investigate the impact of climate risks, namely climate disasters, climate policy uncertainty, and climate risk concern. We found that in high-risk environments, all climatic factors exert pronounced impacts on China's energy market risks, with climate risk concern being especially influential. Overall, this study has important policy implications for energy security and adaptation to climate change.

Suggested Citation

  • Guo, Kun & Kang, Yuxin & Ma, Dandan & Lei, Lei, 2024. "How do climate risks impact the contagion in China's energy market?," Energy Economics, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:eneeco:v:133:y:2024:i:c:s0140988324001580
    DOI: 10.1016/j.eneco.2024.107450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324001580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yun & Luk, Paul, 2020. "Measuring economic policy uncertainty in China," China Economic Review, Elsevier, vol. 59(C).
    2. Ding, Qian & Huang, Jianbai & Zhang, Hongwei, 2022. "Time-frequency spillovers among carbon, fossil energy and clean energy markets: The effects of attention to climate change," International Review of Financial Analysis, Elsevier, vol. 83(C).
    3. Richard Green, 2008. "Carbon Tax or Carbon Permits: The Impact on Generators Risks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 67-90.
    4. Christiane Baumeister & Gert Peersman, 2013. "The Role Of Time‐Varying Price Elasticities In Accounting For Volatility Changes In The Crude Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1087-1109, November.
    5. Peter H. Egger & Michaela Kesina & Sergey Nigai, 2013. "Contagious Energy Prices," The World Economy, Wiley Blackwell, vol. 36(3), pages 349-362, March.
    6. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    7. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Gonzalez-Fernandez, Marcos & Miffre, Joelle, 2020. "Fear of hazards in commodity futures markets," Journal of Banking & Finance, Elsevier, vol. 119(C).
    8. Naeem, Muhammad Abubakr & Peng, Zhe & Suleman, Mouhammed Tahir & Nepal, Rabindra & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency connectedness among oil shocks, electricity and clean energy markets," Energy Economics, Elsevier, vol. 91(C).
    9. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    10. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(2), pages 119-125, February.
    11. Gabauer, David, 2021. "Dynamic measures of asymmetric & pairwise connectedness within an optimal currency area: Evidence from the ERM I system," Journal of Multinational Financial Management, Elsevier, vol. 60(C).
    12. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    13. Anders Levermann, 2014. "Climate economics: Make supply chains climate-smart," Nature, Nature, vol. 506(7486), pages 27-29, February.
    14. Su, Chi-Wei & Yuan, Xi & Umar, Muhammad & Chang, Tsangyao, 2022. "Dynamic price linkage of energies in transformation: Evidence from quantile connectedness," Resources Policy, Elsevier, vol. 78(C).
    15. Liu, Ying & Lin, Boqiang & Xu, Bin, 2021. "Modeling the impact of energy abundance on economic growth and CO2 emissions by quantile regression: Evidence from China," Energy, Elsevier, vol. 227(C).
    16. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    17. Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
    18. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    19. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Author Correction: Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(4), pages 362-362, April.
    20. Tugcu, Can Tansel & Topcu, Mert, 2018. "Total, renewable and non-renewable energy consumption and economic growth: Revisiting the issue with an asymmetric point of view," Energy, Elsevier, vol. 152(C), pages 64-74.
    21. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    22. Martínez-Zarzoso, Inmaculada & Bengochea-Morancho, Aurelia & Morales-Lage, Rafael, 2019. "Does environmental policy stringency foster innovation and productivity in OECD countries?," Energy Policy, Elsevier, vol. 134(C).
    23. Liwen Vaughan & Yue Chen, 2015. "Data mining from web search queries: A comparison of google trends and baidu index," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(1), pages 13-22, January.
    24. Davood Manzoor & Sajjad Seiflou, 2011. "Are crude Oil, Gas and Coal Prices Cointegrated?," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 16(1), pages 29-51, winter.
    25. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    26. Ren, Xiaohang & Li, Jingyao & He, Feng & Lucey, Brian, 2023. "Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying granger tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    27. Wen, Jun & Zhao, Xin-Xin & Chang, Chun-Ping, 2021. "The impact of extreme events on energy price risk," Energy Economics, Elsevier, vol. 99(C).
    28. Nikolaos Antonakakis & Ioannis Chatziantoniou & George Filis, 2014. "Dynamic Spillovers of Oil Price Shocks and Policy Uncertainty," Department of Economics Working Papers wuwp166, Vienna University of Economics and Business, Department of Economics.
    29. Song, Yingjie & Ji, Qiang & Du, Ya-Juan & Geng, Jiang-Bo, 2019. "The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets," Energy Economics, Elsevier, vol. 84(C).
    30. Adedeji, Abdulkabir N. & Ahmed, Funmilola F. & Adam, Shehu U., 2021. "Examining the dynamic effect of COVID-19 pandemic on dwindling oil prices using structural vector autoregressive model," Energy, Elsevier, vol. 230(C).
    31. Ren, Xiaohang & Zhang, Xiao & Yan, Cheng & Gozgor, Giray, 2022. "Climate policy uncertainty and firm-level total factor productivity: Evidence from China," Energy Economics, Elsevier, vol. 113(C).
    32. May Haggag & Ahmad S. Siam & Wael El-Dakhakhni & Paulin Coulibaly & Elkafi Hassini, 2021. "A deep learning model for predicting climate-induced disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 1009-1034, May.
    33. Barnes, Ryan & Bosworth, Ryan, 2015. "LNG is linking regional natural gas markets: Evidence from the gravity model," Energy Economics, Elsevier, vol. 47(C), pages 11-17.
    34. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of Twitter sentiment on renewable energy stocks," Energy Economics, Elsevier, vol. 76(C), pages 153-169.
    35. Zhao, Zhen-yu & Zhu, Jiang & Xia, Bo, 2016. "Multi-fractal fluctuation features of thermal power coal price in China," Energy, Elsevier, vol. 117(P1), pages 10-18.
    36. Li, Jinchao & Wu, Qianqian & Tian, Yu & Fan, Liguo, 2021. "Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network," Energy, Elsevier, vol. 227(C).
    37. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2014. "Dynamic spillovers of oil price shocks and economic policy uncertainty," Energy Economics, Elsevier, vol. 44(C), pages 433-447.
    38. Kanamura, Takashi, 2009. "A supply and demand based volatility model for energy prices," Energy Economics, Elsevier, vol. 31(5), pages 736-747, September.
    39. King, Mervyn A & Wadhwani, Sushil, 1990. "Transmission of Volatility between Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 5-33.
    40. Ren, Xiaohang & Lu, Zudi & Cheng, Cheng & Shi, Yukun & Shen, Jian, 2019. "On dynamic linkages of the state natural gas markets in the USA: Evidence from an empirical spatio-temporal network quantile analysis," Energy Economics, Elsevier, vol. 80(C), pages 234-252.
    41. Zhang, Dandan & Shi, Xunpeng & Sheng, Yu, 2015. "Comprehensive measurement of energy market integration in East Asia: An application of dynamic principal component analysis," Energy Economics, Elsevier, vol. 52(PB), pages 299-305.
    42. Ji, Qiang & Li, Jianping & Sun, Xiaolei, 2019. "Measuring the interdependence between investor sentiment and crude oil returns: New evidence from the CFTC's disaggregated reports," Finance Research Letters, Elsevier, vol. 30(C), pages 420-425.
    43. Jinny X. Zhang & Boyan Yordanov & Alexander Gaunt & Michael X. Wang & Peng Dai & Yuan-Jyue Chen & Kerou Zhang & John Z. Fang & Neil Dalchau & Jiaming Li & Andrew Phillips & David Yu Zhang, 2021. "A deep learning model for predicting next-generation sequencing depth from DNA sequence," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    44. Vikrant Panwar & Subir Sen, 2020. "Disaster Damage Records of EM-DAT and DesInventar: A Systematic Comparison," Economics of Disasters and Climate Change, Springer, vol. 4(2), pages 295-317, July.
    45. Sheng, Yu & Shi, Xunpeng, 2013. "Energy market integration and equitable growth across countries," Applied Energy, Elsevier, vol. 104(C), pages 319-325.
    46. Hulshof, Daan & van der Maat, Jan-Pieter & Mulder, Machiel, 2016. "Market fundamentals, competition and natural-gas prices," Energy Policy, Elsevier, vol. 94(C), pages 480-491.
    47. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    48. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    49. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    50. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    51. Nicola Banwell & Shannon Rutherford & Brendan Mackey & Roger Street & Cordia Chu, 2018. "Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework," IJERPH, MDPI, vol. 15(3), pages 1-11, March.
    52. Philipp Krueger & Zacharias Sautner & Laura T Starks, 2020. "The Importance of Climate Risks for Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1067-1111.
    53. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    54. Papież, Monika & Śmiech, Sławomir, 2015. "Dynamic steam coal market integration: Evidence from rolling cointegration analysis," Energy Economics, Elsevier, vol. 51(C), pages 510-520.
    55. Liu, Hsiang-Hsi & Chen, Yi-Chun, 2013. "A study on the volatility spillovers, long memory effects and interactions between carbon and energy markets: The impacts of extreme weather," Economic Modelling, Elsevier, vol. 35(C), pages 840-855.
    56. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    57. de Lucena, André Frossard Pereira & Szklo, Alexandre Salem & Schaeffer, Roberto & de Souza, Raquel Rodrigues & Borba, Bruno Soares Moreira Cesar & da Costa, Isabella Vaz Leal & Júnior, Amaro Olimpio P, 2009. "The vulnerability of renewable energy to climate change in Brazil," Energy Policy, Elsevier, vol. 37(3), pages 879-889, March.
    58. Misund, Bård & Oglend, Atle, 2016. "Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach," Energy, Elsevier, vol. 111(C), pages 178-189.
    59. Faccini, Renato & Matin, Rastin & Skiadopoulos, George, 2023. "Dissecting climate risks: Are they reflected in stock prices?," Journal of Banking & Finance, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Man, Yuanyuan & Zhang, Sunpei & He, Yongda, 2024. "Dynamic risk spillover and hedging efficacy of China’s carbon-energy-finance markets: Economic policy uncertainty and investor sentiment non-linear causal effects," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1397-1416.
    2. Yanhong Feng & Dilong Xu & Pierre Failler & Tinghui Li, 2020. "Research on the Time-Varying Impact of Economic Policy Uncertainty on Crude Oil Price Fluctuation," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
    3. Zhang, Jiahao & Zhang, Yifeng & Wei, Yu & Wang, Zhuo, 2024. "Normal and extreme impact and connectedness between fossil energy futures markets and uncertainties: Does El Niño-Southern Oscillation matter?," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 188-215.
    4. Assaf, Ata & Charif, Husni & Mokni, Khaled, 2021. "Dynamic connectedness between uncertainty and energy markets: Do investor sentiments matter?," Resources Policy, Elsevier, vol. 72(C).
    5. Yingce Yang & Junjie Guo & Ruihong He, 2023. "The Asymmetric Impact of the Oil Price and Disaggregate Shocks on Economic Policy Uncertainty: Evidence From China," SAGE Open, , vol. 13(2), pages 21582440231, June.
    6. Su, Chi-Wei & Yuan, Xi & Umar, Muhammad & Chang, Tsangyao, 2022. "Dynamic price linkage of energies in transformation: Evidence from quantile connectedness," Resources Policy, Elsevier, vol. 78(C).
    7. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    8. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    9. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    10. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.
    11. Zhu, Xuehong & Liao, Jianhui & Chen, Ying, 2021. "Time-varying effects of oil price shocks and economic policy uncertainty on the nonferrous metals industry: From the perspective of industrial security," Energy Economics, Elsevier, vol. 97(C).
    12. Chatziantoniou, Ioannis & Gabauer, David, 2021. "EMU risk-synchronisation and financial fragility through the prism of dynamic connectedness," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 1-14.
    13. Duan, Xiaoping & Xiao, Ya & Ren, Xiaohang & Taghizadeh-Hesary, Farhad & Duan, Kun, 2023. "Dynamic spillover between traditional energy markets and emerging green markets: Implications for sustainable development," Resources Policy, Elsevier, vol. 82(C).
    14. Czudaj, Robert L., 2019. "Crude oil futures trading and uncertainty," Energy Economics, Elsevier, vol. 80(C), pages 793-811.
    15. Zhang, Jiahao & Chen, Xiaodan & Wei, Yu & Bai, Lan, 2023. "Does the connectedness among fossil energy returns matter for renewable energy stock returns? Fresh insights from the Cross-Quantilogram analysis," International Review of Financial Analysis, Elsevier, vol. 88(C).
    16. Apostolakis, George N. & Floros, Christos & Gkillas, Konstantinos & Wohar, Mark, 2021. "Financial stress, economic policy uncertainty, and oil price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    17. Feng, Huiqun & Zhang, Jun & Guo, Na, 2023. "Time-varying linkages between energy and stock markets: Dynamic spillovers and driving factors," International Review of Financial Analysis, Elsevier, vol. 89(C).
    18. Thobekile Qabhobho & Anokye M. Adam & Anthony Adu-Asare Idun & Emmanuel Asafo-Adjei & Ebenezer Boateng, 2023. "Exploring the Time-varying Connectedness and Contagion Effects among Exchange Rates of BRICS, Energy Commodities, and Volatilities," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 272-283, March.
    19. Song, Lu & Tian, Gengyu & Jiang, Yonghong, 2022. "Connectedness of commodity, exchange rate and categorical economic policy uncertainties — Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    20. Gu, Xin & Zhu, Zixiang & Yu, Minli, 2021. "The macro effects of GPR and EPU indexes over the global oil market—Are the two types of uncertainty shock alike?," Energy Economics, Elsevier, vol. 100(C).

    More about this item

    Keywords

    Climate risk; Risk spillover; Energy security; TVP-VAR; Quantile model;
    All these keywords.

    JEL classification:

    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:133:y:2024:i:c:s0140988324001580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.