IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v127y2023ipbs0140988323005935.html
   My bibliography  Save this article

Cheaper solar, cleaner grid?

Author

Listed:
  • Li, Haoyang
  • Lin, Wen

Abstract

Although wind capacity cost is not expected to experience large changes in the near future, solar capacity cost is projected to drop by 45% in roughly thirty years. Using an analytical model and a dynamic structural simulation model, we show that wind energy capacity investment first increases but then decreases under the projected solar cost decline. Results indicate that when solar cost drops from $880/kW to $700/kW, CO2 emissions increase by 12.9% due to the decline in wind energy investment, indicating that cheaper solar cost does not necessarily imply a cleaner grid without any carbon policy intervention. However, if the regulator requires a minimum of 36% renewable penetration rate, social welfare from renewable investment when solar cost arrives at $700/kW would increase by $0.74 billion/year. This study illustrates the importance of policies such as the renewable portfolio standards under future decline in solar capacity cost if a carbon tax is politically infeasible.

Suggested Citation

  • Li, Haoyang & Lin, Wen, 2023. "Cheaper solar, cleaner grid?," Energy Economics, Elsevier, vol. 127(PB).
  • Handle: RePEc:eee:eneeco:v:127:y:2023:i:pb:s0140988323005935
    DOI: 10.1016/j.eneco.2023.107095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323005935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:hal:spmain:info:hdl:2441/jff6fcqc8e6bbhnlvps4rou6 is not listed on IDEAS
    2. Solomon, A.A. & Faiman, D. & Meron, G., 2010. "Grid matching of large-scale wind energy conversion systems, alone and in tandem with large-scale photovoltaic systems: An Israeli case study," Energy Policy, Elsevier, vol. 38(11), pages 7070-7081, November.
    3. Duncan S. Callaway & Meredith Fowlie & Gavin McCormick, 2018. "Location, Location, Location: The Variable Value of Renewable Energy and Demand-Side Efficiency Resources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 39-75.
    4. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    5. Verdolini, Elena & Vona, Francesco & Popp, David, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," Energy Policy, Elsevier, vol. 116(C), pages 242-256.
    6. Daniel T. Kaffine & Brannin J. McBee & Jozef Lieskovsky, 2013. "Emissions Savings from Wind Power Generation in Texas," The Energy Journal, , vol. 34(1), pages 155-176, January.
    7. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    8. Bushnell, James, 2010. "Building Blocks: Investment in Renewable and Non-Renewable Technologies," Staff General Research Papers Archive 31546, Iowa State University, Department of Economics.
    9. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    10. Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
    11. Cullen, Joseph A. & Reynolds, Stanley S., 2023. "Market dynamics and investment in the electricity sector," International Journal of Industrial Organization, Elsevier, vol. 89(C).
    12. Carson, Richard T. & Novan, Kevin, 2013. "The private and social economics of bulk electricity storage," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 404-423.
    13. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    14. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
    15. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holladay, J. Scott & LaRiviere, Jacob, 2017. "The impact of cheap natural gas on marginal emissions from electricity generation and implications for energy policy," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 205-227.
    2. Chu, Yin & Gao, Juanxia & Li, Haoyang, 2023. "Wind power expansion and regional allocative efficiency among fossil-fuel electricity generators," International Journal of Industrial Organization, Elsevier, vol. 91(C).
    3. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    4. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    5. Steven M. Smith, 2019. "The Relative Economic Merits of Alternative Water Rights," Working Papers 2019-08, Colorado School of Mines, Division of Economics and Business.
    6. Cullen, Joseph A. & Reynolds, Stanley S., 2023. "Market dynamics and investment in the electricity sector," International Journal of Industrial Organization, Elsevier, vol. 89(C).
    7. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    8. Brittany Tarufelli & Ben Gilbert, 2019. "Leakage in Regional Climate Policy? Implications of Electricity Market Design," Working Papers 2019-07, Colorado School of Mines, Division of Economics and Business, revised Dec 2021.
    9. Dilek Uz & Callista Chim, 2022. "Intermittency in Wind Energy and Emissions from the Electricity Sector: Evidence from 13 Years of Data," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    10. Graf, Christoph & Marcantonini, Claudio, 2017. "Renewable energy and its impact on thermal generation," Energy Economics, Elsevier, vol. 66(C), pages 421-430.
    11. Petersen, Claire & Reguant, Mar & Segura, Lola, 2024. "Measuring the impact of wind power and intermittency," Energy Economics, Elsevier, vol. 129(C).
    12. Yagi, Chihiro & Takeuchi, Kenji, 2023. "Estimating the value of energy storage: The role of pumped hydropower in the electricity supply network," Japan and the World Economy, Elsevier, vol. 68(C).
    13. LaRiviere, Jacob & Lyu, Xueying, 2022. "Transmission constraints, intermittent renewables and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    14. Brehm, Paul, 2019. "Natural gas prices, electric generation investment, and greenhouse gas emissions," Resource and Energy Economics, Elsevier, vol. 58(C).
    15. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    16. Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).
    17. Rivera, Nathaly M. & Ruiz-Tagle, J. Cristobal & Spiller, Elisheba, 2024. "The health benefits of solar power generation: Evidence from Chile," Journal of Environmental Economics and Management, Elsevier, vol. 126(C).
    18. Carlini, Federico & Christensen, Bent Jesper & Datta Gupta, Nabanita & Santucci de Magistris, Paolo, 2023. "Climate, wind energy, and CO2 emissions from energy production in Denmark," Energy Economics, Elsevier, vol. 125(C).
    19. Grant D. Jacobsen, 2016. "Improving Energy Codes," The Energy Journal, , vol. 37(2), pages 93-108, April.
    20. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "The economics of renewable energy support," Journal of Public Economics, Elsevier, vol. 176(C), pages 94-117.

    More about this item

    Keywords

    Solar energy; Wind energy; Value dependence; Emission rebound;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:127:y:2023:i:pb:s0140988323005935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.