IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v124y2023ics0140988323002724.html
   My bibliography  Save this article

Does industrial upgrading improve eco-efficiency? Evidence from China's industrial sector

Author

Listed:
  • Wang, Feng
  • Wu, Min
  • Du, Xuyang

Abstract

Promoting industrial upgrading is the fundamental path for China to realize the coordination of industrial development and ecological protection. This paper firstly measures the industrial upgrading index (IUI) and eco-efficiency of 37 sub-industries in China's industrial sector based on the comprehensive weighting method and super-efficiency slacks-based measure model, and then for the first time, examines the impact of industrial upgrading on China's industrial eco-efficiency and its differences among industries and influential mechanisms using the panel data models. The following main conclusions are obtained. First, both the IUI and eco-efficiency of China's whole industrial sector showed an upward trend from 2005 to 2019. Second, there are significant gaps in the IUI and eco-efficiency among industries, and these gaps gradually increase in 2005–2019. Third, industrial upgrading significantly improves China's industrial eco-efficiency, and the results of robustness test also support this conclusion. Fourth, industrial upgrading positively affects the eco-efficiency of both high-pollution and low-pollution industries, and the positive effect on low-pollution industries is slightly greater than that on high-pollution industries. Fifth, industrial upgrading improves industrial eco-efficiency by enhancing production efficiency and energy utilization efficiency and optimizing energy consumption structure.

Suggested Citation

  • Wang, Feng & Wu, Min & Du, Xuyang, 2023. "Does industrial upgrading improve eco-efficiency? Evidence from China's industrial sector," Energy Economics, Elsevier, vol. 124(C).
  • Handle: RePEc:eee:eneeco:v:124:y:2023:i:c:s0140988323002724
    DOI: 10.1016/j.eneco.2023.106774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323002724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao Wang & Yue‐Jun Zhang, 2020. "Does environmental regulation policy help improve green production performance? Evidence from China's industry," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(2), pages 937-951, March.
    2. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    3. Tone, Kaoru & Sahoo, Biresh K., 2004. "Degree of scale economies and congestion: A unified DEA approach," European Journal of Operational Research, Elsevier, vol. 158(3), pages 755-772, November.
    4. Zhimin Dai & Lu Guo & Zhengyi Jiang, 2016. "Study on the industrial Eco-Efficiency in East China based on the Super Efficiency DEA Model: an example of the 2003–2013 panel data," Applied Economics, Taylor & Francis Journals, vol. 48(59), pages 5779-5785, December.
    5. Loren Brandt & Trevor Tombe & Xiadong Zhu, 2013. "Factor Market Distortions Across Time, Space, and Sectors in China," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 16(1), pages 39-58, January.
    6. Liu, Zhao & Zhang, Huan & Zhang, Yue-Jun & Zhu, Tian-Tian, 2020. "How does industrial policy affect the eco-efficiency of industrial sector? Evidence from China," Applied Energy, Elsevier, vol. 272(C).
    7. Raymond W. Goldsmith, 1951. "A Perpetual Inventory of National Wealth," NBER Chapters, in: Studies in Income and Wealth, Volume 14, pages 5-73, National Bureau of Economic Research, Inc.
    8. Loren Brandt & Trevor Tombe & Xiadong Zhu, 2013. "Factor Market Distortions Across Time, Space, and Sectors in China," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 16(1), pages 39-58, January.
    9. Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
    10. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    11. Naoki Murakami, 2015. "Changes in Japanese industrial structure and urbanization: evidence from prefectural data," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 20(3), pages 385-403, July.
    12. John Humphrey & Hubert Schmitz, 2002. "How does insertion in global value chains affect upgrading in industrial clusters?," Regional Studies, Taylor & Francis Journals, vol. 36(9), pages 1017-1027.
    13. Xia Wang & Lijun Zhang & Yaochen Qin & Jingfei Zhang, 2020. "Analysis of China’s Manufacturing Industry Carbon Lock-In and Its Influencing Factors," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    14. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    15. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    16. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    17. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    18. Robert H. Rasche & John A. Tatom, 1977. "Energy resources and potential GNP," Review, Federal Reserve Bank of St. Louis, vol. 59(Jun), pages 10-24.
    19. Gereffi, Gary, 1999. "International trade and industrial upgrading in the apparel commodity chain," Journal of International Economics, Elsevier, vol. 48(1), pages 37-70, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Chuanwang & Min, Jialin, 2024. "Dynamic trends and regional differences of economic effects of ultra-high-voltage transmission projects," Energy Economics, Elsevier, vol. 138(C).
    2. Xuefen Liu & Chang Gan & Mihai Voda, 2024. "Analysis of the Effect of Environmental Regulation on Eco-Efficiency of Service Sector," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    3. Yang, Zhaofu & Liu, Hong & Yuan, Yongna & Li, Muhua, 2024. "Can renewable energy development facilitate China's sustainable energy transition? Perspective from Energy Trilemma," Energy, Elsevier, vol. 304(C).
    4. Jiantao Peng & Yihua Liu & Chong Xu & Debao Chen, 2024. "Unveiling the Patterns and Drivers of Ecological Efficiency in Chinese Cities: A Comprehensive Study Using Super-Efficiency Slacks-Based Measure and Geographically Weighted Regression Approaches," Sustainability, MDPI, vol. 16(8), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang-Han Ma & Jin-Chi Hsieh & Yung-Ho Chiu, 2020. "Comparing regional differences in global energy performance," Energy & Environment, , vol. 31(6), pages 943-960, September.
    2. Yongyi Cheng & Tianyuan Shao & Huilin Lai & Manhong Shen & Yi Li, 2019. "Total-Factor Eco-Efficiency and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-14, October.
    3. Wang, Feng & Wu, Min & Wang, Jingcao, 2023. "Can increasing economic complexity improve China's green development efficiency?," Energy Economics, Elsevier, vol. 117(C).
    4. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    5. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    6. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    7. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    8. Chenchen Su & Jinchuan Shen & Fei Wang, 2024. "Can income growth and environmental improvements go hand in hand? An empirical study of Chinese agriculture," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 70(7), pages 321-333.
    9. Yu, Xiaohong & Xu, Haiyan & Lou, Wengao & Xu, Xun & Shi, Victor, 2023. "Examining energy eco-efficiency in China's logistics industry," International Journal of Production Economics, Elsevier, vol. 258(C).
    10. Ning Geng & Zengjin Liu & Xuejiao Wang & Lin Meng & Jiayan Pan, 2022. "Measurement of Green Total Factor Productivity and Its Spatial Convergence Test on the Pig-Breeding Industry in China," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    11. Du, Juan & Chen, Chien-Ming & Chen, Yao & Cook, Wade D. & Zhu, Joe, 2012. "Additive super-efficiency in integer-valued data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 218(1), pages 186-192.
    12. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    13. Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).
    14. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    15. Lyu, Yanwei & Xiao, Xuan & Zhang, Jinning, 2024. "Does the digital economy enhance green total factor productivity in China? The evidence from a national big data comprehensive pilot zone," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 183-196.
    16. Yiming Hou & Guanwen Yin & Yanbin Chen, 2022. "Environmental Regulation, Financial Pressure and Industrial Ecological Efficiency of Resource-Based Cities in China: Spatiotemporal Characteristics and Impact Mechanism," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    17. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    18. Cui, Lixin & Dong, Ruxue & Mu, Yunguo & Shen, Zhiyang & Xu, Jiatong, 2022. "How policy preferences affect the carbon shadow price in the OECD," Applied Energy, Elsevier, vol. 311(C).
    19. Shixiong Cheng & Jiahui Xie & De Xiao & Yun Zhang, 2019. "Measuring the Environmental Efficiency and Technology Gap of PM 2.5 in China’s Ten City Groups: An Empirical Analysis Using the EBM Meta-Frontier Model," IJERPH, MDPI, vol. 16(4), pages 1-22, February.
    20. Zhen Zeng & Xianzhong Mu, 2024. "Can the Development of Renewable Energy Improve Total-Factor Carbon Emissions Efficiency? Evidence from 30 Provinces in China," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(6), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:124:y:2023:i:c:s0140988323002724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.