IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v70y2023icp342-366.html
   My bibliography  Save this article

Using covariates to improve the efficacy of univariate bubble detection methods

Author

Listed:
  • Astill, Sam
  • Taylor, A.M. Robert
  • Kellard, Neil
  • Korkos, Ioannis

Abstract

We explore how information additional to a specific price series can be used to improve the power of popular univariate autoregressive-based methods for detecting and dating speculative price bubble episodes. Following Phillips et al. (2011, 2015) we base our approach on sequences of sub-sample regression-based augmented Dickey–Fuller [ADF] statistics. Our point of departure from these extant procedures is to allow for additional information in the testing and dating procedures. To do so we follow the approach of Hansen (1995) and augment the sub-sample ADF regressions with covariate regressors. The limiting null distributions of the resulting statistics depend on the long-run squared correlation between the covariates and the regression error. We show that this dependence can be accounted for by using a residual bootstrap re-sampling method. Simulation evidence shows that including relevant covariates can significantly improve the efficacy of both the resulting bubble detection tests and the associated date-stamping procedure, relative to using standard sub-sample ADF statistics. An empirical application of the proposed methodology to monthly S&P 500 data is considered, using a variety of candidate covariates. Using these covariates, the onset of the dotcom bubble and the bubble associated with Black Monday are both identified significantly earlier than when using standard methods.

Suggested Citation

  • Astill, Sam & Taylor, A.M. Robert & Kellard, Neil & Korkos, Ioannis, 2023. "Using covariates to improve the efficacy of univariate bubble detection methods," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 342-366.
  • Handle: RePEc:eee:empfin:v:70:y:2023:i:c:p:342-366
    DOI: 10.1016/j.jempfin.2022.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539822001141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2022.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1043-1078, November.
    2. Robert J. Shiller, 2015. "Irrational Exuberance," Economics Books, Princeton University Press, edition 3, number 10421.
    3. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    4. Jeff Fleming & Barbara Ostdiek & Robert E. Whaley, 1995. "Predicting stock market volatility: A new measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(3), pages 265-302, May.
    5. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    6. Franz C. Palm & Stephan Smeekes & Jean‐Pierre Urbain, 2008. "Bootstrap Unit‐Root Tests: Comparison and Extensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 371-401, March.
    7. Emmanuel Farhi & Ricardo Caballero & Pierre-Olivier Gourinchas, "undated". "Financial Crash, Commodity Prices and Global Imbalances," Working Paper 20933, Harvard University OpenScholar.
    8. Kenneth J. Singleton, 2014. "Investor Flows and the 2008 Boom/Bust in Oil Prices," Management Science, INFORMS, vol. 60(2), pages 300-318, February.
    9. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(1), pages 95-131, April.
    10. Peter C. B. Phillips & Jun Yu, 2011. "Dating the timeline of financial bubbles during the subprime crisis," Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
    11. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    12. Harvey, David I. & Leybourne, Stephen J. & Sollis, Robert & Taylor, A.M. Robert, 2016. "Tests for explosive financial bubbles in the presence of non-stationary volatility," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 548-574.
    13. Kim, Kun Ho & Kim, Taejin, 2016. "Capital asset pricing model: A time-varying volatility approach," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 268-281.
    14. Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, July.
    15. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    16. Yoosoon Chang & Robin C. Sickles & Wonho Song, 2017. "Bootstrapping unit root tests with covariates," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 136-155, March.
    17. Diba, Behzad T & Grossman, Herschel I, 1988. "Explosive Rational Bubbles in Stock Prices?," American Economic Review, American Economic Association, vol. 78(3), pages 520-530, June.
    18. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    19. Elliott, Graham & Jansson, Michael, 2003. "Testing for unit roots with stationary covariates," Journal of Econometrics, Elsevier, vol. 115(1), pages 75-89, July.
    20. Tsvetanov, Daniel & Coakley, Jerry & Kellard, Neil, 2016. "Bubbling over! The behaviour of oil futures along the yield curve," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 516-533.
    21. Ricardo J. Caballero & Emmanuel Farhi & Pierre-Olivier Gourinchas, 2008. "Financial Crash, Commody Prices, and Global Inbalances," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 39(2 (Fall)), pages 1-68.
    22. Phillips, Peter C.B. & Shi, Shu-Ping, 2018. "Financial Bubble Implosion And Reverse Regression," Econometric Theory, Cambridge University Press, vol. 34(4), pages 705-753, August.
    23. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    24. Sam Astill & David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2017. "Tests for an end-of-sample bubble in financial time series," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 651-666, October.
    25. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1043-1078, November.
    26. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    27. Harvey, David I. & Leybourne, Stephen J. & Sollis, Robert, 2017. "Improving the accuracy of asset price bubble start and end date estimators," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 121-138.
    28. Hansen, Bruce E., 1995. "Rethinking the Univariate Approach to Unit Root Testing: Using Covariates to Increase Power," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1148-1171, October.
    29. Evans, George W, 1991. "Pitfalls in Testing for Explosive Bubbles in Asset Prices," American Economic Review, American Economic Association, vol. 81(4), pages 922-930, September.
    30. Yoosoon Chang & Joon Park, 2002. "On The Asymptotics Of Adf Tests For Unit Roots," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 431-447.
    31. Chen, Cathy Yi-Hsuan & Després, Roméo & Guo, Li & Renault, Thomas, 2019. "What makes cryptocurrencies special? Investor sentiment and return predictability during the bubble," IRTG 1792 Discussion Papers 2019-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dettoni, Robinson & Gil-Alana, Luis A. & Yaya, OlaOluwa S., 2024. "Stock market prices and Dividends in the US: Bubbles or Long-run equilibria relationships?," International Review of Financial Analysis, Elsevier, vol. 94(C).
    2. Nicolas Cofre & Magdalena Mosionek-Schweda, 2023. "A simulated electronic market with speculative behaviour and bubble formation," Papers 2311.12247, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedersen, Thomas Quistgaard & Schütte, Erik Christian Montes, 2020. "Testing for explosive bubbles in the presence of autocorrelated innovations," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 207-225.
    2. Figuerola-Ferretti, Isabel & McCrorie, J. Roderick & Paraskevopoulos, Ioannis, 2020. "Mild explosivity in recent crude oil prices," Energy Economics, Elsevier, vol. 87(C).
    3. Harvey, David I. & Leybourne, Stephen J. & Sollis, Robert & Taylor, A.M. Robert, 2016. "Tests for explosive financial bubbles in the presence of non-stationary volatility," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 548-574.
    4. Moreira, Afonso M. & Martins, Luis F., 2020. "A new mechanism for anticipating price exuberance," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 199-221.
    5. Skrobotov Anton, 2023. "Testing for explosive bubbles: a review," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-26, January.
    6. Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.
    7. Horváth, Lajos & Li, Hemei & Liu, Zhenya, 2022. "How to identify the different phases of stock market bubbles statistically?," Finance Research Letters, Elsevier, vol. 46(PA).
    8. Assaf, Ata & Demir, Ender & Ersan, Oguz, 2024. "Detecting and date-stamping bubbles in fan tokens," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 98-113.
    9. Caravello, Tomas E. & Psaradakis, Zacharias & Sola, Martin, 2023. "Rational bubbles: Too many to be true?," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    10. Tsvetanov, Daniel & Coakley, Jerry & Kellard, Neil, 2016. "Bubbling over! The behaviour of oil futures along the yield curve," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 516-533.
    11. Hansen, Jacob H. & Møller, Stig V. & Pedersen, Thomas Q. & Schütte, Christian M., 2024. "House price bubbles under the COVID-19 pandemic," Journal of Empirical Finance, Elsevier, vol. 75(C).
    12. Gharib, Cheima & Mefteh-Wali, Salma & Serret, Vanessa & Ben Jabeur, Sami, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Resources Policy, Elsevier, vol. 74(C).
    13. Sinelnikova-Muryleva, Elena & Skrobotov, Anton, 2017. "Testing time series for the bubbles (with application to Russian data)," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 90-103.
    14. Basse, Tobias & Klein, Tony & Vigne, Samuel A. & Wegener, Christoph, 2021. "U.S. stock prices and the dot.com-bubble: Can dividend policy rescue the efficient market hypothesis?," Journal of Corporate Finance, Elsevier, vol. 67(C).
    15. Blasques, Francisco & Koopman, Siem Jan & Nientker, Marc, 2022. "A time-varying parameter model for local explosions," Journal of Econometrics, Elsevier, vol. 227(1), pages 65-84.
    16. Wang, Xiao-Qing & Wu, Tong & Zhong, Huaming & Su, Chi-Wei, 2023. "Bubble behaviors in nickel price: What roles do geopolitical risk and speculation play?," Resources Policy, Elsevier, vol. 83(C).
    17. Yang Hu, 2023. "A review of Phillips‐type right‐tailed unit root bubble detection tests," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 141-158, February.
    18. Wegener, Christoph & Kruse, Robinson & Basse, Tobias, 2019. "The walking debt crisis," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 382-402.
    19. Wang, Xichen & Yan, Ji (Karena) & Yan, Cheng & Gozgor, Giray, 2021. "Emerging stock market exuberance and international short-term flows," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    20. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).

    More about this item

    Keywords

    Rational bubbles; Explosive behaviour; Covariates; Sub-sample unit root statistics; i.i.d. residual bootstrap;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G01 - Financial Economics - - General - - - Financial Crises

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:70:y:2023:i:c:p:342-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.