Using approximate gradients in developing an interactive interior primal-dual multiobjective linear programming algorithm
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kevin A. McShane & Clyde L. Monma & David Shanno, 1989. "An Implementation of a Primal-Dual Interior Point Method for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 1(2), pages 70-83, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.
- Mehdi Karimi & Somayeh Moazeni & Levent Tunçel, 2018. "A Utility Theory Based Interactive Approach to Robustness in Linear Optimization," Journal of Global Optimization, Springer, vol. 70(4), pages 811-842, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- R. Almeida & A. Teixeira, 2015. "On the convergence of a predictor-corrector variant algorithm," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 401-418, July.
- Duarte Jr, A. M., 2000. "Fast Computation of Efficient Portfolios," Finance Lab Working Papers flwp_32, Finance Lab, Insper Instituto de Ensino e Pesquisa.
- Maros, Istvan & Haroon Khaliq, Mohammad, 2002. "Advances in design and implementation of optimization software," European Journal of Operational Research, Elsevier, vol. 140(2), pages 322-337, July.
- Coralia Cartis & Yiming Yan, 2016. "Active-set prediction for interior point methods using controlled perturbations," Computational Optimization and Applications, Springer, vol. 63(3), pages 639-684, April.
- Coralia Cartis & Yiming Yan, 2016. "Active-set prediction for interior point methods using controlled perturbations," Computational Optimization and Applications, Springer, vol. 63(3), pages 639-684, April.
- Lorenzo Fiaschi & Marco Cococcioni, 2022. "A Non-Archimedean Interior Point Method and Its Application to the Lexicographic Multi-Objective Quadratic Programming," Mathematics, MDPI, vol. 10(23), pages 1-34, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:89:y:1996:i:1:p:202-211. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.