IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v320y2025i1p239-255.html
   My bibliography  Save this article

Globally optimal sequencing of optimal reactive dispatch control adjustments to minimize operational losses in transmission systems by graph shortest path, parallel computing, and dynamic programming

Author

Listed:
  • Barros, Rafael Martins
  • Lage, Guilherme Guimarães
  • Rabêlo, Ricardo de Andrade Lira

Abstract

Minimizing operational losses in transmission systems through the Optimal Reactive Dispatch (ORD), a non-convex mixed-integer nonlinear programming problem, is crucial for operational cost reduction, resource optimization, and greenhouse gas emission mitigation. Besides all intricacies associated with solving ORDs, transmission system operators encounter the challenge of determining sequences in which ORD control adjustments must be implemented before significant changes occur in generators scheduled power output and system loading. Sequencing ORD control adjustments, in spite of not being novel, remains modestly scrutinized in the literature. This paper introduces a two-phase framework that tackles the globally optimal sequencing of n ORD control adjustments over n! potential paths by solving the ORD to minimize operational losses in transmission systems in the first phase, and optimally sequencing ORD control adjustments employing fast power flow calculations, graph shortest path, parallel computing, and dynamic programming in the second phase. We discuss the framework’s second phase asymptotic time complexity, which is exponential over factorial for brute-force approaches, and its capability to guarantee globally optimal paths toward minimal operational losses determined in the framework’s first phase. ORD control adjustments for transmission systems with up to 27 controllable variables are benchmarked against two mixed-integer nonlinear programming solvers: BARON, a global non-convex solver, and Knitro, a local solver (assuming convexity around local optima). Globally optimal sequences of ORD control adjustments over n! potential paths (more than 1028 for sequencing 27 control adjustments) and average algorithm runtimes validate the straightforward application and, more importantly, effectiveness of such a comprehensive framework.

Suggested Citation

  • Barros, Rafael Martins & Lage, Guilherme Guimarães & Rabêlo, Ricardo de Andrade Lira, 2025. "Globally optimal sequencing of optimal reactive dispatch control adjustments to minimize operational losses in transmission systems by graph shortest path, parallel computing, and dynamic programming," European Journal of Operational Research, Elsevier, vol. 320(1), pages 239-255.
  • Handle: RePEc:eee:ejores:v:320:y:2025:i:1:p:239-255
    DOI: 10.1016/j.ejor.2024.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724005939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taccari, Leonardo, 2016. "Integer programming formulations for the elementary shortest path problem," European Journal of Operational Research, Elsevier, vol. 252(1), pages 122-130.
    2. Soler, Edilaine Martins & de Sousa, Vanusa Alves & da Costa, Geraldo R.M., 2012. "A modified Primal–Dual Logarithmic-Barrier Method for solving the Optimal Power Flow problem with discrete and continuous control variables," European Journal of Operational Research, Elsevier, vol. 222(3), pages 616-622.
    3. Martins Barros, Rafael & Guimarães Lage, Guilherme & de Andrade Lira Rabêlo, Ricardo, 2022. "Sequencing paths of optimal control adjustments determined by the optimal reactive dispatch via Lagrange multiplier sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 301(1), pages 373-385.
    4. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Jisun & Joung, Seulgi & Lee, Kyungsik, 2022. "A fully polynomial time approximation scheme for the probability maximizing shortest path problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 35-45.
    2. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    3. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "An effective two phase heuristic for synchronized seru production scheduling and 3PL transportation problems," International Journal of Production Economics, Elsevier, vol. 268(C).
    4. Alencar, Marina Valença & da Silva, Diego Nunes & Nepomuceno, Leonardo & Martins, André Christóvão Pio & Balbo, Antonio Roberto & Soler, Edilaine Martins, 2024. "Discrete optimal power flow with prohibited zones, multiple-fuel options, and practical operational rules for control devices," Applied Energy, Elsevier, vol. 358(C).
    5. Esmaili, Masoud & Shayanfar, Heidar Ali & Moslemi, Ramin, 2014. "Locating series FACTS devices for multi-objective congestion management improving voltage and transient stability," European Journal of Operational Research, Elsevier, vol. 236(2), pages 763-773.
    6. Tereza Sedlářová Nehézová & Michal Škoda & Robert Hlavatý & Helena Brožová, 2022. "Fuzzy and robust approach for decision-making in disaster situations," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 617-645, June.
    7. Lera-Romero, Gonzalo & Miranda-Bront, Juan José, 2021. "A branch and cut algorithm for the time-dependent profitable tour problem with resource constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 879-896.
    8. Sergey S. Ketkov, 2023. "On the Multistage Shortest Path Problem Under Distributional Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 277-308, April.
    9. Mohammadi Fathabad, Abolhassan & Cheng, Jianqiang & Pan, Kai & Yang, Boshi, 2023. "Asymptotically tight conic approximations for chance-constrained AC optimal power flow," European Journal of Operational Research, Elsevier, vol. 305(2), pages 738-753.
    10. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    11. Martins Barros, Rafael & Guimarães Lage, Guilherme & de Andrade Lira Rabêlo, Ricardo, 2022. "Sequencing paths of optimal control adjustments determined by the optimal reactive dispatch via Lagrange multiplier sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 301(1), pages 373-385.
    12. Haltor Mataifa & Senthil Krishnamurthy & Carl Kriger, 2023. "Comparative Analysis of the Particle Swarm Optimization and Primal-Dual Interior-Point Algorithms for Transmission System Volt/VAR Optimization in Rectangular Voltage Coordinates," Mathematics, MDPI, vol. 11(19), pages 1-29, September.
    13. Varawala, Lamia & Dán, György & Hesamzadeh, Mohammad Reza & Baldick, Ross, 2023. "A generalised approach for efficient computation of look ahead security constrained optimal power flow," European Journal of Operational Research, Elsevier, vol. 310(2), pages 477-494.
    14. Pinheiro, Ricardo B.N.M. & Lage, Guilherme G. & da Costa, Geraldo R.M., 2019. "A primal-dual integrated nonlinear rescaling approach applied to the optimal reactive dispatch problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1137-1153.
    15. An, Qingxian & Tao, Xiangyang & Chen, Xiaohong, 2023. "Nested frontier-based best practice regulation under asymmetric information in a principal–agent framework," European Journal of Operational Research, Elsevier, vol. 306(1), pages 269-285.
    16. Rafael Castro Andrade & Rommel Dias Saraiva, 2020. "MTZ-primal-dual model, cutting-plane, and combinatorial branch-and-bound for shortest paths avoiding negative cycles," Annals of Operations Research, Springer, vol. 286(1), pages 147-172, March.
    17. Tomas Balezentis & Kristiaan Kerstens & Zhiyang Shen, 2022. "Economic and Environmental Decomposition of Luenberger-Hicks-Moorsteen Total Factor Productivity Indicator: Empirical Analysis of Chinese Textile Firms With a Focus on Reporting Infeasibilities and Qu," Post-Print hal-03833245, HAL.
    18. Hiroyuki Goto & Alan T. Murray, 2019. "Small-m method for detecting all longest paths," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 824-839, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:320:y:2025:i:1:p:239-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.