IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v197y2023i1d10.1007_s10957-023-02175-7.html
   My bibliography  Save this article

On the Multistage Shortest Path Problem Under Distributional Uncertainty

Author

Listed:
  • Sergey S. Ketkov

    (HSE University)

Abstract

In this paper, we consider an ambiguity-averse multistage network game between a user and an attacker. The arc costs are assumed to be random variables that satisfy prescribed first-order moment constraints for some subsets of arcs and individual probability constraints for some particular arcs. The user aims at minimizing its cumulative expected loss by traversing between two fixed nodes in the network, while the attacker’s objective is to maximize the user’s expected loss by selecting a distribution of arc costs from the family of admissible distributions. In contrast to most of the related studies, both the user and the attacker can dynamically adjust their decisions at particular nodes of the user’s path. By observing the user’s decisions, the attacker may reveal some additional distributional information associated with the arcs emanated from the current user’s position. It is shown that the resulting multistage distributionally robust shortest path problem (DRSPP) admits a linear mixed-integer programming reformulation (MIP). In particular, we distinguish between acyclic and general graphs by introducing different forms of non-anticipativity constraints. Finally, we perform a numerical study, where the quality of adaptive decisions and computational tractability of the proposed MIP reformulation are explored with respect to several classes of synthetic network instances.

Suggested Citation

  • Sergey S. Ketkov, 2023. "On the Multistage Shortest Path Problem Under Distributional Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 277-308, April.
  • Handle: RePEc:spr:joptap:v:197:y:2023:i:1:d:10.1007_s10957-023-02175-7
    DOI: 10.1007/s10957-023-02175-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02175-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02175-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Iain Dunning, 2016. "Multistage Robust Mixed-Integer Optimization with Adaptive Partitions," Operations Research, INFORMS, vol. 64(4), pages 980-998, August.
    2. Dimitris Bertsimas & Angelos Georghiou, 2015. "Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization," Operations Research, INFORMS, vol. 63(3), pages 610-627, June.
    3. Taccari, Leonardo, 2016. "Integer programming formulations for the elementary shortest path problem," European Journal of Operational Research, Elsevier, vol. 252(1), pages 122-130.
    4. Ketkov, Sergey S. & Prokopyev, Oleg A., 2020. "On greedy and strategic evaders in sequential interdiction settings with incomplete information," Omega, Elsevier, vol. 92(C).
    5. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    6. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    7. Krzysztof Postek & Dick den Hertog, 2016. "Multistage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty Set," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 553-574, August.
    8. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    9. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    10. Wang, Zhuolin & You, Keyou & Song, Shiji & Zhang, Yuli, 2020. "Wasserstein distributionally robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 31-43.
    11. Juan S. Borrero & Oleg A. Prokopyev & Denis Sauré, 2019. "Sequential Interdiction with Incomplete Information and Learning," Operations Research, INFORMS, vol. 67(1), pages 72-89, January.
    12. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2019. "Robust Dual Dynamic Programming," Operations Research, INFORMS, vol. 67(3), pages 813-830, May.
    2. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    3. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    4. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    5. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Other publications TiSEM a03f895f-b941-41a9-84e0-b, Tilburg University, School of Economics and Management.
    6. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    7. Farough Motamed Nasab & Zukui Li, 2023. "Multistage Adaptive Robust Binary Optimization: Uncertainty Set Lifting versus Partitioning through Breakpoints Optimization," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    8. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    9. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Discussion Paper 2016-039, Tilburg University, Center for Economic Research.
    10. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    11. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maarten H., 2019. "An approximation framework for two-stage ambiguous stochastic integer programs under mean-MAD information," European Journal of Operational Research, Elsevier, vol. 274(2), pages 432-444.
    12. Dimitris Bertsimas & Shimrit Shtern & Bradley Sturt, 2023. "A Data-Driven Approach to Multistage Stochastic Linear Optimization," Management Science, INFORMS, vol. 69(1), pages 51-74, January.
    13. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
    14. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    15. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    16. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    17. Lee, Jisun & Joung, Seulgi & Lee, Kyungsik, 2022. "A fully polynomial time approximation scheme for the probability maximizing shortest path problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 35-45.
    18. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    19. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    20. Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:197:y:2023:i:1:d:10.1007_s10957-023-02175-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.